欢迎光临《计算力学学报》官方网站!
吴志刚,徐小明.平面刚体系统的参数预调节保辛算法[J].计算力学学报,2024,41(1):101~107
本文二维码信息
码上扫一扫!
平面刚体系统的参数预调节保辛算法
A parameter-preadjusted symplectic algorithm for planar rigid body systems
投稿时间:2023-08-26  修订日期:2023-10-17
DOI:10.7511/jslx20230826001
中文关键词:  平面刚体系统  笛卡尔坐标  正交投影  保辛算法  高精度
英文关键词:planar rigid body systems  Cartesian coordinates  orthogonal projection  symplectic algorithm  high-precision
基金项目:国家自然科学基金(12372053;12002396;91748203;11872381)资助项目.
作者单位E-mail
吴志刚 中山大学·深圳 航空航天学院, 深圳 518107 wuzhigang@mail.sysu.edu.cn 
徐小明 中山大学·深圳 航空航天学院, 深圳 518107  
摘要点击次数: 401
全文下载次数: 302
中文摘要:
      保辛积分方法在约束哈密顿系统中有着重要的应用,是因为其在长时间仿真中表现出极好的稳定性。然而随着仿真时长增加,保辛格式通常具有较大的相位误差累积。本文提出了一种平面多刚体系统的参数预调节保辛积分方法。通过推导具有待定参数的改进的拉格朗日方程,并将其与已有保辛格式相结合并预先调节相关参数取值,可以大幅降低数值解的相位误差。理论分析与数值结果表明参数预调节保辛积分方法不仅保持了辛结构,而且具有很低的相位误差累积。因此,参数预调节保辛积分方法可应用于长时间仿真分析。
英文摘要:
      Symplectic integrations have important applications for constrained Hamiltonian systems because they exhibit excellent stability in long-time simulations.However, the symplectic scheme usually has a large phase error accumulation with the increase of simulation time.This paper develops a parameter-preadjusted symplectic integration for planar rigid multibody systems with Cartesian coordinates.By deriving the modified Lagrangian equation with undetermined parameters, combining it with the existing symplectic scheme, and adjusting the corresponding parameter in advance, the symplectic method can greatly reduce the phase error of the numerical solution.Theoretical analysis and numerical results show that the new method not only preserves the symplectic structure of the flow but also presents a very low phase error accumulation.Therefore, the parameter-preadjusted symplectic integration is recommended for long-time simulations.
查看全文  查看/发表评论  下载PDF阅读器
您是第13577770位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计