Analysis of the effective thermal conductivity of periodic axisymmetric porous microstructures under large deformations
Received:March 13, 2024  Revised:May 19, 2024
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20240313001
KeyWord:large deformations  periodic  porous microstructure  inverse motion  effective thermal conductivity
              
AuthorInstitution
阎军 大连理工大学 工程力学系 工业装备结构分析优化与CAE软件全国重点实验室, 大连 ;大连理工大学宁波研究院, 宁波
刘志辉 大连理工大学 工程力学系 工业装备结构分析优化与CAE软件全国重点实验室, 大连
隋倩倩 大连工业大学 机械工程与自动化学院, 大连
聂英豪 大连理工大学 工程力学系 工业装备结构分析优化与CAE软件全国重点实验室, 大连
范志瑞 大连理工大学 工程力学系 工业装备结构分析优化与CAE软件全国重点实验室, 大连
Hits: 31
Download times: 18
Abstract:
      Periodic porous microstructures are widely utilized in the design of novel flexible morphing aircraft structures.During high-speed operation,these aircraft generate substantial heat and undergo severe deformation,which directly impacts the thermal dissipation efficiency of their microstructures.The relationship between the deformation of periodic porous microstructures and effective thermal conductivity remains inadequately studied.This paper analyzes the effective thermal conductivity of three types of periodic axisymmetric porous microstructures under going large deformations.An inverse-motion nonlinear analysis method is employed to establish a large-deformation nonlinear analysis model for the three microstructures under uniform compression displacement loads,achieving the solution for the structural shape before deformation.The effective thermal conductivity of the structures before and after deformation is determined using the steady-state heat conduction method,and the variation in effective thermal conductivity with deformation is explored through comparison.Results show that under large deformations,the shape of the periodic axisymmetric porous microstructures changes significantly with increasing compression displacement,and the variation in effective thermal conductivity can reach up to 90%.Therefore,the variation of the equivalent thermal conductivity of the microstructures under large deformation needs to be considered.This study provides a theoretical basis for the thermal design of porous microstructures under large deformations.