Identification of nonlinear characteristics and structural damage from vibration response based on Volterra series and recursive least squares method
Received:November 29, 2023  Revised:February 05, 2024
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20231129001
KeyWord:Volterra series  recursive least squares method  nonlinear characteristic identification  structural damage identification  bayesian fusion
              
AuthorInstitution
李雪艳 暨南大学 力学与建筑工程学院 重大工程灾害与控制教育部重点实验室, 广州
赖煜山 暨南大学 力学与建筑工程学院 重大工程灾害与控制教育部重点实验室, 广州
刘恩 暨南大学 力学与建筑工程学院 重大工程灾害与控制教育部重点实验室, 广州
刘荣林 暨南大学 力学与建筑工程学院 重大工程灾害与控制教育部重点实验室, 广州
赵卫 暨南大学 力学与建筑工程学院 重大工程灾害与控制教育部重点实验室, 广州
Hits: 31
Download times: 15
Abstract:
      When a structure is damaged,nonlinear vibration will be induced.So nonlinear identification can identify structural damage.A Volterra series can provide a concise analytical model for a nonlinear vibration analysis.Linear and nonlinear components of a vibration response can be separated by a Volterra series.Thus more sensitive nonlinear characteristic indicators can be established.When Volterra kernels are identified,it is an inverse problem that requires the input excitation response and the output vibration responses.To avoid the measurement of the excitation response,vibration response from different measurement points are proposed to be used as input responses.To avoid matrix inversion and ill-posedness,a recursive least-squares method is proposed.The characteristics of linear and nonlinear vibration response components separated by a Volterra series are studied.Nonlinear characteristic indicators are constructed for identifying nonlinear damage location.In order to eliminate the influence of the excitation location and the input vibration response location on nonlinear feature indicators,Bayesian fusion is used to fuse the final feature vectors,and the damage location can be accurately identified.The effectiveness of the proposed method is verified through several scenario analyses of a seven-story framework structure.