Study on the coupling method of peridynamic least square minimization and finite element method
Received:March 18, 2022  Revised:May 24, 2022
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20220318002
KeyWord:peridynamic least square minimization  finite element method  coupling  nonlocal  crack propagation
              
AuthorInstitution
郑庆胜 青岛理工大学 理学院, 青岛 ;青岛市地下非常规能源开发工程研究中心, 青岛
张树翠 青岛理工大学 理学院, 青岛 ;青岛市地下非常规能源开发工程研究中心, 青岛
孙可明 青岛理工大学 理学院, 青岛 ;青岛市地下非常规能源开发工程研究中心, 青岛
李凯 青岛理工大学 理学院, 青岛 ;青岛市地下非常规能源开发工程研究中心, 青岛
张欣刚 青岛理工大学 理学院, 青岛
Hits: 592
Download times: 393
Abstract:
      Accurately and efficiently modeling the damage and fracture problem is one of the key research topics in computational mechanics.A coupling method is proposed in this paper that combines the advantages of peridynamic least squares minimization (PDLSM) and finite element method (FEM) to deal with discontinuous problems to impose the boundary conditions easily.To this end,the crack and its possible propagation region are divided into PD region.The boundary and other regions are divided into FEM region as well as the node types.FEM nodes only interact with other nodes in the same element,while PD nodes interact with all nodes in its family.The global stiffness matrix and mass matrix can then be obtained.The coupling method includes the concepts of stress and strain,and has no zero-energy modes,compared with traditional PD methods.Several numerical examples are used to validate the accuracy and efficiency of the proposed coupling method.