A maximum entropy approach for uncertainty quantification of initial geometric imperfections of thin-walled cylindrical shell
Received:February 09, 2021  Revised:March 25, 2021
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20210209001
KeyWord:axially compressed thin-walled cylindrical shell  Initial geometric imperfections  maximum entropy method  buckling load  knockdown factor
           
AuthorInstitution
李建宇 天津科技大学 机械工程学院, 天津市轻工与食品工程机械装备集成设计与在线监控重点实验室, 天津
佘昌忠 天津科技大学 机械工程学院, 天津市轻工与食品工程机械装备集成设计与在线监控重点实验室, 天津
张丽丽 天津职业技术师范大学 理学院, 天津
杨坤 天津科技大学 机械工程学院, 天津市轻工与食品工程机械装备集成设计与在线监控重点实验室, 天津
Hits: 613
Download times: 341
Abstract:
      To address the imperfection sensitivity of the axial compression buckling load of a thin-walled cylindrical shell structure and the uncertainty of real geometric imperfections,an initial imperfection modeling and buckling load prediction method based on measured imperfection data and the principle of maximum entropy are proposed.Firstly,the initial geometric imperfections are considered as a two-dimensional random field,and the random field modeling of the initial imperfections is transformed into the modeling of a random vector using the measured imperfection data and the Karhunen-Loève expansion method.Secondly,the probability distribution of this random vector is determined using the maximum entropy method.Finally,based on the constructed random model,and combined with MCMC sampling method and a deterministic buckling analysis method,the stochastic buckling analysis is carried out.Furthermore,the reliability-based buckling load knockdown factor is given.Numerical examples show that the results of this method provide a better coverage of the experimental results and are a more unbiased estimate of the buckling load for thin-walled cylindrical shells compared with the method that directly assumes a random field-related structure.