|
Numerical simulation of the interaction between dam and water in reservoir under earthquake excitation |
Received:October 26, 2020 Revised:February 20, 2021 |
View Full Text View/Add Comment Download reader |
DOI:10.7511/jslx20201026001 |
KeyWord:earthquake dam-water interaction wave numerical simulation |
Author | Institution |
许栋 |
天津大学 水利工程仿真与安全国家重点实验室, 天津 |
梁心雅 |
天津大学 水利工程仿真与安全国家重点实验室, 天津 |
许航维 |
天津大学 水利工程仿真与安全国家重点实验室, 天津 |
李健增 |
天津大学 水利工程仿真与安全国家重点实验室, 天津 |
及春宁 |
天津大学 水利工程仿真与安全国家重点实验室, 天津 |
|
Hits: 1023 |
Download times: 375 |
Abstract: |
During earthquakes, hydraulic dams are subjected to forced vibrations which induce surface water waves and hydrodynamics pressure behind the dam.Such dam-water coupled interactions may affect dam safety. In order to evaluate the influence of surface waves and hydrodynamic pressures on dams, a mathematical model is established for incompressible flow with moving boundary conditions to simulate the seismically excited surface waves and hydrodynamic pressures.Simulation results show that under the assumption of negligible elastic deformation of the dam, the height and energy of surface waves increase linearly with the vibration amplitude of the dam; the wave height increases nonlinearly with water depth of the reservoir.The primary fluid forces on the dam are the added mass force and the hydrostatic pressure. The horizontal movement of the ground under the reservoir has a minor influence on the hydrodynamic forces on the dam. |