A study on discrete optimization problem based on confidence structural robust optimization algorithm
Received:June 15, 2021  Revised:July 08, 2021
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20210615416
KeyWord:optimal design  discrete optimization  confidence robust optimization  non-liner semidefinite program
              
AuthorInstitution
杜剑明 大连大学 机械工程学院, 大连 ;大连理工大学 工业装备国家重点实验室 工程力学系, 大连 ;大连理工大学 宁波研究院, 宁波
杜宗亮 大连理工大学 工业装备国家重点实验室 工程力学系, 大连 ;大连理工大学 宁波研究院, 宁波
刘畅 大连理工大学 工业装备国家重点实验室 工程力学系, 大连 ;大连理工大学 宁波研究院, 宁波
张维声 大连理工大学 工业装备国家重点实验室 工程力学系, 大连 ;大连理工大学 宁波研究院, 宁波
郭旭 大连理工大学 工业装备国家重点实验室 工程力学系, 大连 ;大连理工大学 宁波研究院, 宁波
Hits: 888
Download times: 312
Abstract:
      It is always assumed the parameters in traditional optimization design problems (such as material properties, applied loads) are deterministic and continuous variables. Due to the unavoidable uncertainties in manufacturing or measurement, however, in practical applications, the desired results in engineering are often discrete. Even if the continuous optimal solution considers the influence of uncertain parameters, after rounding, it is likely to produce large deviations or even become no longer feasible. Combining the robust optimization algorithm considering non-probabilistic uncertain parameters, a confidence-robust optimization method equivalent to the discrete optimization sequence based on the rounding strategy is proposed for solving discrete optimization problems. The confidence-robust optimization solution method of discrete optimization problems with uncertain parameters is further studied using nonlinear semi-definite programming efficiently, which can strictly guarantee the feasibility of the obtained results. It is expected to reveal the underlying connection between traditional discrete optimization ideas and uncertain optimization ideas, improve the theoretical system of optimization design, and provide new ideas and demonstrations for subsequent related research.