Extra-dof-free generalized finite element method for non-linear analysis
Received:April 13, 2020  Revised:May 23, 2020
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20200413001
KeyWord:generalized finite element method  elastoplasticity  large deformation  nonlinearity  extra degrees of freedom
        
AuthorInstitution
马今伟 大连理工大学 工业装备结构分析国家重点实验室, 大连
段庆林 大连理工大学 工业装备结构分析国家重点实验室, 大连
陈嵩涛 大连理工大学 工业装备结构分析国家重点实验室, 大连
Hits: 791
Download times: 671
Abstract:
      In this paper,the extra-dof-free generalized finite element method (GFEM) is extended from linear elastic analysis to nonlinear elastoplastic large deformation analysis.The local enrichment functions rely on existing nodes without introducing extra degrees of freedom (dof) and hence the issue of linear dependence is removed.In the framework of the updated Lagrangian method,the rate form of the nodal internal force is obtained by the linearization of the weak form of the governing equation and it is divided into material and geometrical parts.Hyperelastic and hypo-elastoplastic material models are considered.The Newton-Raphson iteration is employed and the related consistent tangent stiffness matrix is provided.Three benchmark examples are analysed.Numerical results show that the developed nonlinear extra-dof-free GFEM is able to accurately solve hyperelastic and hypo-elastoplastic large deformation problems and it has higher accuracy than the traditional linear finite element method.This work broadens the range of the application fields of the extra-dof-free GFEM.