A precise integration single-step method for nonhomogeneous dynamic equations
Received:March 28, 2019  Revised:May 14, 2019
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20190328003
KeyWord:nonhomogeneous dynamic equations  precise integration method  differential quadrature method  variable order  single-step method
                    
AuthorInstitution
王永 国网上海市电力公司特高压换流站分公司, 上海
马骏 国网湖北省电力有限公司, 武汉
李靖翔 南方电网超高压公司广州局, 广州
陈汝斯 国网湖北省电力有限公司电力科学研究院, 武汉
许杨 国网上海市电力公司特高压换流站分公司, 上海
郝跃东 国网上海市电力公司特高压换流站分公司, 上海
胡鹏 国网上海市电力公司特高压换流站分公司, 上海
Hits: 985
Download times: 818
Abstract:
      Aiming at the nonhomogeneous equation v=Hv+f(v,t) used for a dynamic system,an efficient precise integration single-step method was proposed combined with the precise integration method (PIM) and the differential quadrature method (DQM).In the numerical integration process,the state matrix inversion was avoided and vk+i/s(i=1,2,…,s) is estimated by the explicit Runge-Kutta method in the same order with DQM. eHt is calculated by the PIM for the proposed algorithm,and the Duhamel integration term is calculated by the s-order s-order time-domain DQM.The algorithm is uniform and easy to be programmed,and the variable order and step-size can be flexibly realized.Compared with other single-step method and the predictor-corrector symplectic time-subdomain algorithm,the simulation results showed that the method has highly computational precision,high efficiency and good stability.It has great advantages in solving time response problems for large-scale dynamic systems.