The predictor-corrector scheme based Generalized-α method and its application in nonlinear structural dynamics
Received:December 04, 2018  Revised:February 23, 2019
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20181204001
KeyWord:time integration method  Generalized-α method  predictor-corrector  structural dynamics
                 
AuthorInstitution
李志彬 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连
江鹏 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连
潘嘉诚 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连
张群 英特工程仿真技术大连有限公司, 大连
赵国忠 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连
关振群 大连理工大学 工程力学系 工业装备结构分析国家重点实验室, 大连
Hits: 1214
Download times: 851
Abstract:
      Direct integration methods are effective methods in solving dynamic equation.This paper applied a predictor-corrector scheme based Generalized-α method for nonlinear structure dynamic equation,and compared it with Newmark method and Bathe method.In this method,the solution of the current computational step is firstly predicted;then,the nonlinear iteration is performed by initializing the solution with the predicted value;the solution is corrected until convergence condition is met,and than the calculation entered the next time step.The method guarantees the performance of Generalized-α method;at the same time it simplifies the nonlinear iterations and is easy to implement.Finally,the examples with large deformation shell and solid elements show the proposed method is stable and accurate.