Dynamic modeling and symplectic solution of a circular membrane of dielectric elastomer under Hamilton system
Received:April 09, 2018  Revised:May 19, 2018
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20180409001
KeyWord:dielectric elastomer  symplectic Runge-Kutta algorithm  energy conservation  numerical stability
        
AuthorInstitution
李少锋 西北工业大学 理学院, 西安 ;复杂系统动力学与控制工信部重点实验室, 西安
都琳 西北工业大学 理学院, 西安 ;复杂系统动力学与控制工信部重点实验室, 西安
邓子辰 西北工业大学 工程力学系, 西安 ;复杂系统动力学与控制工信部重点实验室, 西安
Hits: 1788
Download times: 893
Abstract:
      The symplectic algorithm is used to study the dynamic response of the circular membrane of dielectric elastomer in a Hamiltonian system.Firstly,this model is introduced into the dual Hamiltonian variable system,and the generalized momentum and Hamilton functions of the system are obtained by means of Legendre transformation.The canonical equation is obtained by using the variational principle to the Hamilton function.Secondly,for the obtained canonical equations,the calculation scheme of the symplectic Runge-Kutta algorithm is given.Finally,the two-stage and fourth-order symplectic Runge-Kutta algorithm is adopted for the numerical solution.Numerical simulation results show that the two-stage and fourth-order symplectic Runge-Kutta algorithm has an advantage of preserving energy and long-time numerical stability by comparing with the four-stage and fourth-order classic Runge-Kutta algorithm.In addition,this example also illustrates the limitations of step dependence of the four-stage and fourth-order classical Runge-Kutta algorithm.