Enhancement of genetic algorithm and its application to the identification of soil parameters by inverse analysis
Received:February 28, 2017  Revised:June 20, 2017
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20170228003
KeyWord:genetic algorithm  inverse analysis  constitutive model  geomechanics  finite element method
              
AuthorInstitution
季慧 上海交通大学 土木工程系, 上海
金银富 上海交通大学 土木工程系, 上海 ;南特中央理工大学, 南特 法国 44300
尹振宇 南特中央理工大学, 南特 法国 44300
吴则祥 南特中央理工大学, 南特 法国 44300
沈水龙 上海交通大学 土木工程系, 上海
Hits: 1686
Download times: 1259
Abstract:
      The aim of this paper is to develop a new hybrid real-coded genetic algorithm to identify soil parameters.The new development is under the framework of a classical GA by combining two recently developed and efficient crossover operators with a hybrid strategy.A dynamic random mutation has been incorporated into the new RCGA to maintain the diversity of the population.Additionally,in order to improve the convergence speed,a chaotic local search(CLS) has been adopted.The new GA is applied to identify parameters from an in-situ pressuremeter test and an excavation respectively.In order to highlight the performance of the new GA,5 classic optimization methods(classic genetic algorithm,particle swarm optimization,simulated annealing,differential evolution algorithm and artificial bee colony algorithm) are selected to solve the same problems.The search ability and efficiency of the new hybrid RCGA is estimated by comparisons of all the above methods.