Modal analysis of the plate treated with constrained layer damping based on an arbitrary quadrilateral element
Received:January 17, 2017  Revised:April 19, 2017
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20170117002
KeyWord:plate,CLD  arbitrary quadrilateral element  viscoelastic  frequency dependent characteristic  complex eigenvalue
        
AuthorInstitution
任山宏 大连理工大学 工业装备结构分析国家重点实验室 工程力学系, 大连
赵国忠 大连理工大学 工业装备结构分析国家重点实验室 工程力学系, 大连
张顺琦 大连理工大学 工业装备结构分析国家重点实验室 工程力学系, 大连 ;西北工业大学 机电学院 西安
Hits: 1603
Download times: 1173
Abstract:
      Constrained layer damping (CLD) treatments are widely used for vibration and noise reduction of thin-walled structures.Despite extensive applications in finite element analysis of plates treated with CLD,the rectangular element and triangle element are challenged by irregular structural forms or low accuracy.In this paper,based on the discrete Kirchhoff and layer-wise laminate theories,an arbitrarily quadrilateral element for the constrained layer-damped plate is developed using Hamilton's principle.On this basis,considering the frequency dependent characteristics of viscoelastic materials,an iterative algorithm for complex eigenvalue problem of the structures with CLD treatment is given.Numerical examples are presented to do modal analysis of the CLD plates with different shapes.By comparing with the analytical solution,the experimental results and the finite element results,the effectiveness and the applicability of this method to irregular structural forms are verified.