Structural uncertainty modeling and propagation based on principal component analysis
Received:April 18, 2016  Revised:October 16, 2016
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx201704002
KeyWord:uncertainty modeling  principal component analysis  non-probabilistic convex model  uncertainty propagation  interval model  correlation
           
AuthorInstitution
刘杰 湖南大学 机械与运载工程学院 汽车车身先进设计制造国家重点实验室, 长沙
谢凌 湖南大学 机械与运载工程学院 汽车车身先进设计制造国家重点实验室, 长沙
卿宏军 湖南大学 机械与运载工程学院 汽车车身先进设计制造国家重点实验室, 长沙
刘浩 湖南大学 机械与运载工程学院 汽车车身先进设计制造国家重点实验室, 长沙
Hits: 2199
Download times: 1425
Abstract:
      This paper proposes a new structural uncertainty modeling method based on principal component analysis.First,the sample data of uncertain structure parameters are analyzed through principal component analysis method,and the corresponding orthogonal eigenvectors can be obtained.Then the sample data are projected to the new coordinate system which are established based on the eigenvector direction.Finally,the boundaries of uncertain parameters on the new coordinate system are calculated so that the non-probabilistic interval model for modeling the uncertainties of structure parameters is established.The uncertainty model based on principal component analysis is relatively compact,and it can transform the correlated parameters to uncorrelated parameters while the uncertainty model is established,which is convenient to efficiently solve uncertainty propagation problems.Two examples of uncertainty propagation that compared with the traditional interval model and parallelepiped model demonstrate the correctness and effectiveness of the proposed method.