|
Singular boundary method based on time-dependent fundamental solution for 2D Scalar Wave Equation |
Received:November 18, 2015 Revised:June 13, 2016 |
View Full Text View/Add Comment Download reader |
DOI:10.7511/jslx201702016 |
KeyWord:singular boundary method time-dependent fundamental solution wave equation boundary discretization method origin intensity factor |
Author | Institution |
陈文 |
河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京 |
李珺璞 |
河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京 |
傅卓佳 |
河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京 |
|
Hits: 1949 |
Download times: 1411 |
Abstract: |
The singular boundary method(SBM)is a recent boundary-type collocation method with the merits of being meshless, integration-free, mathematically simple, and easy-to-program. This study makes the first attempt to extend the SBM with time-dependent fundamental solution to scalar two-dimensional wave equation. By using the inverse interpolation technique, an empirical formula is proposed to determine the origin intensity factor of the time-dependent SBM for the two-dimensional wave equation with Dirichlet boundary condition. We also introduce a non-singular integral approach to address G singularity of fundamental solution. The numerical experiments demonstrate that the present scheme shows visible advantages in terms of the accuracy and efficiency. |