Singular boundary method based on time-dependent fundamental solution for 2D Scalar Wave Equation
Received:November 18, 2015  Revised:June 13, 2016
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx201702016
KeyWord:singular boundary method  time-dependent fundamental solution  wave equation  boundary discretization method  origin intensity factor
        
AuthorInstitution
陈文 河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京
李珺璞 河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京
傅卓佳 河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京
Hits: 1949
Download times: 1411
Abstract:
      The singular boundary method(SBM)is a recent boundary-type collocation method with the merits of being meshless, integration-free, mathematically simple, and easy-to-program. This study makes the first attempt to extend the SBM with time-dependent fundamental solution to scalar two-dimensional wave equation. By using the inverse interpolation technique, an empirical formula is proposed to determine the origin intensity factor of the time-dependent SBM for the two-dimensional wave equation with Dirichlet boundary condition. We also introduce a non-singular integral approach to address G singularity of fundamental solution. The numerical experiments demonstrate that the present scheme shows visible advantages in terms of the accuracy and efficiency.