Optimization algorithm of boundary value problem of stable nonlinear differential equation for variable cross-section compression bar
Received:June 26, 2016  Revised:August 05, 2016
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx201702002
KeyWord:compression bar stability  boundary value problem nonlinear differential equation  optimization algorithm  critical load  buckling position
           
AuthorInstitution
侯祥林 沈阳建筑大学 机械工程学院 沈阳
胡建强 沈阳建筑大学 机械工程学院 沈阳
卢宏峰 中国建筑东北设计研究院有限公司 沈阳
王春刚 沈阳建筑大学 土木工程学院 沈阳
Hits: 1856
Download times: 1692
Abstract:
      For computation of critical load of variable cross-section compression bar under all types of constraints, numerical algorithms for nonlinear differential equation are combined with optimization methods. Taking initial condition of the starting point boundary, unknown critical load and additional constraint force as design variables, terminal boundary value condition and buckling position condition as objective function, an optimization algorithm for critical load and stable buckling deformation of variable cross-section compression bar is proposed. Visual Basic is used to develop a universal computing program. Typical examples are analyzed. Comparison shows that critical load is computed with high precision and the method can be applied in engineering.