A quasi weak form of smoothed integral for finite element method
Received:May 09, 2016  Revised:May 15, 2016
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx201604009
KeyWord:spurious weak form  smoothed integral  reduced integral  smoothing cells  smoothing strain technique  irregular elements
        
AuthorInstitution
胡德安 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙
韩旭 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙
万德涛 湖南大学 汽车车身先进设计制造国家重点实验室, 长沙
Hits: 2291
Download times: 1062
Abstract:
      A quasi weak form of smoothed integral is developed for the integrand that does not contain the derivative.In the formulations of finite element method,the smoothed integrals for strain matrix and shape functions can be handled respectively by smoothing strain technique and the present quasi weak form,and all the smoothed domain integrals in the stiffness matrix and consistent mass matrix can be transformed into line integral along boundary of smoothing cells.Comparing with the smoothing strain technique,an indefinite integral of shape functions is added in the quasi weak form,and the requirement for continuity of the shape functions is not decreased.However,the integral form is changed and the coordinate mapping and computing of Jacobian matrix can be avoided in the computation of consistent mass matrix.In this work,the proposed quasi weak form is extended to static and structure dynamic ana-lyses of axisymmetric models.Numerical examples show that the proposed method has a good accuracy and convergence properties even for extremely irregular triangular and quadrilateral elements.