Analysis of the stress singularity of the plane cracks terminating at the interface in bonded dissimilar composite materials by the interpolating matrix method
Received:August 31, 2014  Revised:December 08, 2014
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx201601014
KeyWord:orthotropic materials  stress singularity  interpolating matrix method  crack terminating at the interface  asymptotic expansion
              
AuthorInstitution
王静平 安徽工程大学 汽车新技术安徽省工程技术研究中心, 芜湖
程长征 合肥工业大学 土木与水利工程学院, 合肥
韩有民 安徽工程大学 汽车新技术安徽省工程技术研究中心, 芜湖
张金轮 安徽工程大学 汽车新技术安徽省工程技术研究中心, 芜湖
葛仁余 安徽工程大学 汽车新技术安徽省工程技术研究中心, 芜湖
Hits: 1944
Download times: 1292
Abstract:
      In this paper, a method for calculating the singularity orders of the crack terminating at the interface in the anisotropic planes by the interpolating matrix method is proposed.Based on the asymptotic expansion of the generalized displacement fields at the notch tip, and by introducing the generalized displacement functions in the asymptotic expansion into the linear elasticity equilibrium equation, the governing equations of a crack terminating at the interface of the bonded dissimilar materials are transformed into a set of nonlinear characteristic ordinary differential equations (ODEs) with the singularity orders.Then the interpolating matrix method is introduced to solve the derivative ODEs.The relation between the stress singularity and the ply angle of the crack terminating at the interface of bonded dissimilar anisotropic materials can be easily obtained by this method.The numerical results show that the method is efficient and has very high accuracy while comparing with the existent solutions.