|
A thermo-mechanical coupled model of single crystal for finite deformation |
Received:May 06, 2013 Revised:August 31, 2013 |
View Full Text View/Add Comment Download reader |
DOI:10.7511/jslx201404014 |
KeyWord:single crystal crystal slip finite deformation thermal effects |
Author | Institution |
赵聃 |
大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部, 大连 |
朱祎国 |
大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部, 大连 |
胡平 |
大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部, 大连 |
张万喜 |
大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部, 大连 |
|
Hits: 2354 |
Download times: 1320 |
Abstract: |
A thermo-mechanical coupled model based on thermodynamic theory is presented.The elastic deformation gradient was chosen as the basic integration variable in this model.The effects of temper-ature, temperature changing rate and dissipation of plastic deformation are considered in the finite deformation computation.Compared to the traditional algorithm with the elastic deformation gradient as its basic variable, this model can reveal the thermal effects.An implicit integration method was chosen to ensure the numerical stability.The effects of different heating/cooling rates and strain rates on stress-strain response of 1100 Al single crystal are computed.The results showed that this model can evaluate the variation of anisotropy and stress-strain response for single crystal deformation with changing temperature. |