A generalized Hill's lemma for gradient-enhanced Cosserat continuum
Received:April 26, 2010  Revised:December 18, 2010
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20116001
KeyWord:Hill's lemma  Hill-Mandel condition  Gradient-enhanced Cosserat continuum  Average-field theory  RVE boundary conditions
        
AuthorInstitution
李锡夔 大连理工大学 工业装备结构分析国家重点实验室, 大连
张俊波 大连理工大学 工业装备结构分析国家重点实验室, 大连
张雪 大连理工大学 工业装备结构分析国家重点实验室, 大连
Hits: 2706
Download times: 1559
Abstract:
      Based on the Hill's lemma for classical Cauchy continuum, a generalized Hill's lemma for micro-macro homogenization modeling of gradient-enhanced Cosserat continuum is presented in the frame of the average-field theory. In the gradient-enhanced Cosserat continuum modeling not only the strain and stress tensors defined in classical Cosserat continuum but also their gradients at the macroscopic sampling point are attributed to associated micro-structural representative volume element (RVE). The admissible boundary conditions required to prescribe on the RVE in strong and/or weak forms for the modeling are discussed and given to ensure the satisfaction of the enhanced Hill-Mandel energy condition and the average-field theory.