The physical implication and the precision analysis of modified operator γB00
Received:February 23, 2009  Revised:May 24, 2010
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx201101004
KeyWord:spherical wave  damping effect  modified operator  multi-transmitting formula  reflection coefficient
              
AuthorInstitution
周正华 中国地震局 工程力学研究所,哈尔滨 ;中国科学院 力学研究所,北京
魏景芝 中国地震局 工程力学研究所,哈尔滨
王玉石 中国地震局 工程力学研究所,哈尔滨
王伟 中国地震局 工程力学研究所,哈尔滨
丁桦 中国科学院 力学研究所,北京
Hits: 3082
Download times: 1794
Abstract:
      The Multi-Transmitting Formula (MTF) is a local artificial boundary condition used for numerical simulation of the wave motion in infinite media. The drift instability is one type of the numerical instabilities in implementation of MTF into the numerical simulation by time-step integration, and may be eliminated by a simple measure, namely, adding a modified operator γB00 into the operator of MTF. The physical implication on modified operator γB00 of MTF is interpreted based on the theory of spherical wave propagation and damping effect of medium. In addition, the reflection coefficient of MTF added modified operator γB00 in two limit cases (ideal transient case and ideal steady-state case) is derived, and the influence of γ-value on this is analyzed. Results show that MTF added modified operator γB00 used for numerical simulation of the wave motion takes geometric decay effect of medium into account, or introduces damping effect of medium, and if γ≤0.02, the effect of modified operator γB00 on the reflection coefficient of MTF may be ignored.