Finite variation method: a new numerical method for solving variational integral equations
Received:October 26, 2008  
View Full Text  View/Add Comment  Download reader
DOI:10.7511/jslx20105010
KeyWord:finite variation method  variational integral equations  stress intensity factor  3-D general weight function method  multiple virtual crack extension method
              
AuthorInstitution
卢炎麟 浙江工业大学 机械制造及自动化教育部重点实验室,杭州
周国斌 浙江工业大学 机械制造及自动化教育部重点实验室,杭州
贾虹 浙江工业大学 机械制造及自动化教育部重点实验室,杭州
应富强 浙江工业大学 机械制造及自动化教育部重点实验室,杭州
傅建钢 浙江工业大学 机械制造及自动化教育部重点实验室,杭州
Hits: 2318
Download times: 1541
Abstract:
      The multiple virtual crack extension (MVCE) method proposed by authors is extended to a new general numerical method-finite variation method (FVM). Giving finite (N) local variation modes, discretizing the solved variables, writing out the N equations for N local variation modes, the N unknown coefficients in discretization and thus the unknown variables can be solved. The coefficient matrix of the final equations in FVM is usually a symmetrical matrix with small band-width and major diagonals, which has good numerical properties. The distributions of SIFs along 3-D mode I crack fronts are solved by FVM. By means of the programs using the general weight function method based on FVM, the histories of distributions of SIFs along 3-D crack fronts of a body subjected to surface tractions, volume forces and thermal loadings can be determined with high accuracy and efficiency. FVM can be extended to more general areas, which is a widely suitable numerical method for solving the variational integral equations.