欢迎光临《计算力学学报》官方网站!
 
分子动力学模拟含不同初始缺陷单晶镍的断裂行为与应力演化
Molecular dynamics simulation of fracture behavior and stress evolution of single crystal nickel with different initial defects
投稿时间:2022-06-15  修订日期:2022-07-13
DOI:
中文关键词:  单晶镍  微观结构  断裂行为  应力分布  分子动力学模拟
英文关键词:Single crystal nickel  microstructure  fracture behavior  stress distribution  molecular dynamics simulation
基金项目:国家自然科学基金项目(项目编号. 52009097, 12172259); 湖北省教育厅科学研究计划项目 (项目编号: B2021080)
作者单位邮编
李云丽 武汉工程大学 430074
杨振睿 武汉工程大学 
张学林 武汉工程大学 
李嘉维 武汉工程大学 
吴文平* 武汉大学 430072
摘要点击次数: 446
全文下载次数: 0
中文摘要:
      断裂是一个跨尺度复杂的物理过程,宏观尺度的断裂行为已有深入的研究和发展,然而对微观尺度的断裂行为及断裂过程中应力场的变化缺乏深入的理解。本文通过分子动力学模拟,研究了具有不同初始缺陷(尖锐裂纹、钝裂纹和孔洞)的单晶镍的断裂行为和应力分布特征。结果表明,不同的初始缺陷导致了不同的断裂机制、断裂强度和抗断裂性能。含初始孔洞的单晶镍样品有最高的断裂强度和最强的抗断裂性能,这与孔洞扩展过程中堆积层错的形成密切相关。其次是含初始钝裂纹的样品,在裂纹扩展过程中出现由[100]超位错发射引起的裂尖钝化;含尖锐裂纹的样品表现为脆性断裂,裂尖原子没有出现微结构的变化,其强度和抗断裂性能最低。此外,不同的初始缺陷也会导致断裂过程中应力分布的变化,对含有尖锐裂纹的脆性断裂试样,高应力(包括拉伸应力、平均应力、米塞斯应力)总是出现扩展裂纹的裂尖。而对于含有钝裂纹或孔洞的韧性断裂试样,高应力不仅分布在裂尖,也分布在位错发射和堆积层错形成的区域。在裂纹/孔洞扩展之前,应力随着加载时间的增加而迅速增加,而一旦裂纹或孔洞开始扩展,应力增加非常缓慢或几乎不增加,但拉伸应力值始终大于平均应力和米塞斯应力值。这表明,在I型加载条件下,纳米尺度下材料的断裂由拉应力(正应力)控制。
英文摘要:
      Fracture is a complex physical process across several different length scales. The fracture behavior at the macro-scale has been deeply studied and developed. However, there is a lack of in-depth understanding of the fracture behavior at the nanoscale and the change of stress field in the process of fracture. In this paper, the fracture behavior and stress distribution characteristics of single crystal nickel with different initial defects (sharp crack, blunt crack, and void) are studied by molecular dynamics (MD) simulation. The results show different initial defects induce the different fracture mechanisms, fracture strengths and fracture resistance. The single crystal nickel sample with a void has the highest fracture strength and fracture resistance, which is closely related to the formation of stacking faults in the process of void propagation. Followed by the sample with a blunt crack, which is related to the crack tip blunts caused by [100] super-dislocations emission. The sample with a sharp crack shows a brittle fracture, the atoms at the crack tip have no microstructure changes, and the sample has the lowest fracture strength and fracture resistance. Moreover, different initial defects also cause the change of stress distribution during the fracture process. The high stresses (tensile stress, mean stress, von Mises stress) always occurs at the crack tip of growing crack for the cleavage fracture sample with a sharp crack. While for the ductile fracture sample with a blunt crack or void, the high stresses are not only at crack tip but also at the region of plastic deformation (dislocation emission and stacking faults formation). Before crack/void propagation, the stresses increase rapidly with the increase of loading time, and then almost not increase once the crack/void begins to propagate, and the value of tensile stress is always larger than that of mean stress and von Mises stress. It implies that the material failure at nanoscale under I loading condition is controlled by the tensile (normal) stress.
  查看/发表评论  下载PDF阅读器
您是第12367588位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计