欢迎光临《计算力学学报》官方网站!
变截面悬链线无铰拱应变影响线的解析解
Practical analytical expression to strain influence line of varying cross section catenary fixed arch
投稿时间:2021-04-25  修订日期:2021-06-02
DOI:
中文关键词:  无铰拱  变截面悬链线;应变影响线;弹性中心法;实用解析解
英文关键词:fixed arch  varying cross section catenary  strain influence line  elastic center method  practical analytical expression
基金项目:
作者单位邮编
周宇 安徽建筑大学 土木工程学院 230601
许成超 安徽建筑大学 土木工程学院 
赵青 安徽建筑大学 土木工程学院 
王雪忠 安徽建筑大学 土木工程学院 
摘要点击次数: 51
全文下载次数: 0
中文摘要:
      针对变截面悬链线无铰拱应变影响线尚无解析解的现状,通过弹性中心法对其力法方程进行简化,利用Ritter截面变化规律简化变截面悬链线无铰拱的曲线积分,从而推导出变截面悬链线无铰拱应变影响线的闭合解表达式,再将解析结果与有限元分析结果进行对比研究,并对轴力参数展开对比分析。研究结果表明,本文推导得到变截面悬链线无铰拱应变影响线的解析解,数值解析解同有限元结果间最大相对误差小于2%,其轴力影响随矢跨比和测点位置变化而变化,本文公式具有较高的工程精度和计算分析参考价值。
英文摘要:
      In view of the present situation that there is no analytical solution to the strain influence line of the variable-section catenary hingeless arch, this paper simplified the force method equation by using the elastic center method, simplified the curvilinear integral of the variable-section catenary hingeless arch by using the Ritter cross-section variation law, and then deduced the closed solution expression of the variable-section catenary hingeless arch strain influence line. Then the analytical results are compared with the finite element analysis results. The maximum relative error between the numerical solution and the finite element result is less than 2%. The axial force effect varies with the ratio of the span and the position of the measuring point. The formulas presented in this paper have high engineering accuracy and reference value for calculation and analysis.
  查看/发表评论  下载PDF阅读器
您是第8806270位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计