欢迎光临《计算力学学报》官方网站!
不确定结构时域响应分析的多项式维数分解法
A polynomial dimensional decomposition method for analyzing response of uncertain structures in time domain
投稿时间:2020-12-06  修订日期:2021-01-10
DOI:
中文关键词:  不确定性量化  多项式维数分解  正交多项式  降维积分
英文关键词:uncertainty quantification  polynomial dimensional decomposition  orthogonal polynomials  dimension-reduction integration
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位邮编
赵岩 大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部 工程力学系 116023
刘凡 大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部 工程力学系 
孙晓旭 大连理工大学 工业装备结构分析国家重点实验室 运载工程与力学学部 工程力学系 
摘要点击次数: 42
全文下载次数: 0
中文摘要:
      针对具有不确定参数结构,提出时域不确定性传播和量化的多项式维数分解法,确定了结构响应统计量的演变过程。首先,采用参数概率模型来描述结构参数的不确定性,建立结构动力学方程,将结构响应表达为不确定参数的函数;进一步,将所关心的结构响应采用成员函数进行维数分解,并利用正交多项式基底对成员函数进行Fourier展开;最后,应用降维积分方法进行展开系数的求解,给出了响应均值和标准差的计算表达式。在数值算例中,将本文方法与蒙特卡洛方法进行对比,结果表明所建立方法具有较高的求解效率和计算精度。
英文摘要:
      A polynomial dimensional decomposition method for uncertainty propagation and quantification in time domain is proposed for structures with uncertain parameters, and the evolution processes of statistical moments of structural response are determined. Firstly, the uncertainties of structural parameters are described by the parametric probabilistic model to establish the dynamic equation of the structure, and the structural response is expressed as a function of uncertain parameters. Furthermore, a dimensional decomposition of the structural response is performed using component functions, and the Fourier expansion of the component function is carried out using orthonormal polynomial basis. Finally, the dimension-reduction integration method is used to calculate the expansion coefficients, and the calculation expressions of mean value and standard deviation of response are given. The proposed method is compared with the Monte Carlo method using numerical examples, and the results show that the proposed method has good accuracy and efficiency.
  查看/发表评论  下载PDF阅读器
您是第8517272位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计