欢迎光临《计算力学学报》官方网站!
 
极软千枚岩隧道大变形力学机理与施工措施优化
Optimized Control of Large Deformation and Construction Strategies for Tunnels in Extremely Soft Phyllite
投稿时间:2025-04-28  修订日期:2025-05-20
DOI:
中文关键词:  隧道工程  软岩大变形  实测数据  数值模拟  控制技术  支护体系
英文关键词:Tunnel engineering  Large deformation of soft rock  Measured data  Numerical simulation  Control technology  Support system
基金项目:大连理工大学重大成果转化项目(HX20221800)
作者单位邮编
张保敏 大连理工大学 116024
石磊* 大连理工大学 116024
李斌 四川北新天曌投资发展有限公司 
张毅杰 四川北新天曌投资发展有限公司 
陈希茂 中铁二十四局集团福建铁路建设有限公司 
王峥峥 大连理工大学 
摘要点击次数: 17
全文下载次数: 0
中文摘要:
      针对极软千枚岩隧道在施工过程中易发生大变形的问题,现通过现场监测与数值模拟的方法,探明极软千枚岩变形演化规律并提出相对应的新型支护体系。监测结果表明:极软千枚岩大变形具有显著时空非对称性,主要体现在左拱腰累计位移达575 mm(较右拱腰高71.6%)。此外,变形过程中呈现 初期快速释放(前30天占总量80%)+中期二次扰动(40天速率回升至10 mm/d) 的双阶段特征。同时,基于FLAC3D建立的数值模型较好再现了变形规律(模型与实测数据平均偏差低于10%),验证了模型对高地应力-软岩耦合效应的适用性。此外,基于滑移型钢拱架、差异化锚杆加密和延迟二衬施工等措施,提出“柔-刚协同分阶段控制”的新型支护体系,实现总变形量减少40%-50%,非对称差异缩小至30%以内。该成果为同类工程提供了 变形释放-应力转移-结构强化 的系统解决方案,有效解决了传统刚性支护体系在极端变形工况下的适应性不足的问题。
英文摘要:
      To address the severe large deformation issues in tunnels constructed through extremely soft phyllite strata, this study integrates field monitoring and numerical simulation to investigate the deformation mechanisms of the surrounding rock and proposes a novel support system. Monitoring results reveal significant spatiotemporal asymmetry in deformation, with the cumulative displacement of the left haunch reaching 575 mm (71.6% higher than the right haunch). The deformation process exhibits a dual-phase evolution: rapid initial stress release (80% of total deformation within the first 30 days) followed by a mid-term secondary disturbance (rate resurgence to 10 mm/d at 40 days). A FLAC3D-based numerical model effectively replicates these patterns, demonstrating less than 10% average deviation from field data, thereby validating its capability to capture high geostress-soft rock interactions. A "flexible-rigid collaborative phased control" support system is developed, incorporating sliding steel arch supports, asymmetric bolt densification and delayed secondary lining installation. This approach reduces total deformation by 40–50% and mitigates asymmetric displacement differences to below 30%. The proposed methodology establishes a systematic "deformation release-stress redistribution-structural reinforcement" framework, resolving the inadequacy of conventional rigid support systems under extreme deformation conditions.
  查看/发表评论  下载PDF阅读器
您是第15632041位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计