程寿山,胡鑫,胡宁,黄海新,许瑞宁,张连振.裂纹扩展下流形元覆盖更新和参数继承方法[J].计算力学学报,2025,42(3):493~498 |
|  码上扫一扫! |
裂纹扩展下流形元覆盖更新和参数继承方法 |
Manifold element cover renewal and parameter inheritance method under crack propagation |
投稿时间:2024-01-31 修订日期:2024-04-30 |
DOI:10.7511/jslx20240131002 |
中文关键词: 数值流形法 覆盖更新 参数继承 裂纹扩展 |
英文关键词:numerical manifold method physical cover renewal parameter inheritance crack propagation |
基金项目:旧桥检测与加固交通行业重点实验室(北京)开放课题(2020-JQKFKT-3);桥梁结构安全技术国家工程实验室开放课题(2021-GJKFKT);天津市交通运输科技发展计划(2023-48);交通基础设施智慧运维技术装备研发与应用示范项目(2023-420). |
|
摘要点击次数: 6 |
全文下载次数: 4 |
中文摘要: |
数值流形方法(NMM)为解决连续和非连续问题提供了一种统一的解决方案,但前提是确保覆盖生成系统的准确性和稳定性。针对裂纹扩展及新裂纹萌生下的覆盖生成问题,基于NMM覆盖系统生成理论开发出一种覆盖更新方法,该方法简单易实现,能有效消除扩展前裂纹尖端的细化网格,且实现扩展后裂纹尖端的网格细化。同时,为解决引进裂纹尖端渐进函数后带来的参数继承问题,提出涵盖常规物理覆盖和奇异物理覆盖的参数继承策略。通过对含有两条初始裂纹的矩形板进行多裂纹扩展和新裂纹萌生测试以及与SCB试样实验结果对比,验证了所提方法模拟裂纹扩展的准确性。 |
英文摘要: |
The numerical manifold method(NMM)provides a unified solution for solving continuous and discontinuous problems,with the premise of ensuring the accuracy and stability of the covering generation system.A covering updating method is developed based on the NMM covering system generation theory to address the covering generation problem under crack extension and new crack initiation,which is simple to implement and effectively eliminates the refinement mesh at the crack tip before extension,and realizes mesh refinement at the crack tip after extension.Moreover,to deal with the parameter inheritance issue introduced by the introduction of the crack tip asymptotic function,a parameter inheritance strategy covering conventional physical coverage and singular physical coverage is proposed.By conducting multiple-crack extension and new crack initiation tests on rectangular plates with two initial cracks and comparing the results with SCB specimen experiments,the accuracy of the proposed method in simulating crack propagation is verified. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|