欢迎光临《计算力学学报》官方网站!
 
温度环境中正交各向异性简支层合拱的热弹性力学解
The thermo-mechanical solution for an orthotropic simply supported composite arch under a temperature environment
投稿时间:2024-10-30  修订日期:2024-11-24
DOI:
中文关键词:  层合拱  正交各向异性  温度场  热弹性本构关系  传递矩阵法  热弹性力学解
英文关键词:laminated arch  orthotropic anisotropy  temperature field  thermoelastic constitutive relations  transfer matrix method  thermoelastic mechanics solution
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目),中国博士后科学基金,江苏省博士后科研资助计划
作者单位邮编
神琛斐 江苏大学 212000
钱海* 江苏大学 212013
陆春华 江苏大学 
摘要点击次数: 7
全文下载次数: 0
中文摘要:
      正交各向异性复合材料层合结构通常因其轻质高强、高度可定制性等特点,在航空、建筑、制造等多个工程行业有着广泛应用。本文基于热传导方程和热弹性理论,利用结构内位移和应力构建状态方程,求解其在温度环境下正交各向异性简支层合拱的位移和应力分布。首先依据层间温度与径向热流密度的连续性,推导出层合拱内温度分布。根据力学平衡微分方程、几何变形关系以及热应力本构关系,构建了层合拱的状态方程。通过傅里叶级数展开与子层法简化状态方程,并结合层间位移应力的连续性和应力边界条件,求得温度影响下应力和位移解。收敛性分析和有限元结果对比分析,证明了本文方法的高效性与精度。最后以三个算例探讨了温度、厚径比、组成层数及材料特性对热应力与位移的影响。
英文摘要:
      Orthotropic composite laminated structures are widely used in various engineering industries, such as aviation, construction, and manufacturing, due to their lightweight, high strength, and high customizability. This paper, based on the heat conduction equation and the theory of thermoelasticity, constructs a state equation using internal displacement and stress of the structure, and solves for the displacement and stress distribution of orthotropic simply-supported laminated arches under a temperature environment. Firstly, the temperature distribution within the laminated arch is derived based on the continuity of interlayer temperature and radial heat flux density. A state equation for the laminated arch is established according to the mechanical equilibrium differential equation, geometric deformation relationship, and constitutive relationship of thermal stress. The state equation is simplified using Fourier series expansion and the sublayer method, and the solutions for stress and displacement under the influence of temperature are obtained by considering the continuity of interlayer displacement stress and stress boundary conditions. Convergence analysis and comparison with finite element results demonstrate the efficiency and accuracy of the method presented in this paper. Finally, three numerical examples are provided to investigate the effects of temperature, thickness-to-radius ratio, number of constituent layers, and material properties on thermal stress and displacement.
  查看/发表评论  下载PDF阅读器
您是第13989498位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计