欢迎光临《计算力学学报》官方网站!
胡圣荣,张巍,许静静,刘新红.6次Serendipity单元Q32的实现[J].计算力学学报,2024,41(6):1138~1142
本文二维码信息
码上扫一扫!
6次Serendipity单元Q32的实现
Implementation of sextic Serendipity element Q32
投稿时间:2023-07-05  修订日期:2023-09-24
DOI:10.7511/jslx20230705003
中文关键词:  Serendipity单元  6次元Q32  四边形单元  高阶单元  完全多项式积分
英文关键词:Serendipity element  sextic element Q32  quadrilateral element  high-order element  complete polynomial integration
基金项目:华南农业大学质量工程(K20262);华南农业大学在线开放课程(224358)资助项目.
作者单位E-mail
胡圣荣 华南农业大学 水利与土木工程学院, 广州 510642 hsrzz@scau.edu.cn 
张巍 华南农业大学 水利与土木工程学院, 广州 510642  
许静静 华南农业大学 水利与土木工程学院, 广州 510642  
刘新红 华南农业大学 水利与土木工程学院, 广州 510642  
摘要点击次数: 29
全文下载次数: 20
中文摘要:
      高次Serendipity单元有内部节点,不便于网格划分及实际使用,文献较少涉及其实现和实际性能。本文给出了32节点6次单元Q32的形函数,探讨了单元刚度矩阵的两类积分方案,即高斯积分和完全多项式积分。后者的积分点数少于前者。以悬臂梁的横力弯曲为例,测试表明,6×6(36点)高斯积分或11阶的各种完全多项式积分都可作为Q32的积分方案。实用中可取25点对称积分,其精度与6×6高斯积分相当,但计算量约只有后者的69%。对三次位移场问题,即使网格严重畸变,Q32也能较准确地模拟。
英文摘要:
      The high-order Serendipity elements have internal nodes,which is not convenient for grid division and practical use.There are few publications discussing their implementation and actual performance.This paper introduces the shape function of the 32-node sextic element Q32,and discusses two integration schemes of element stiffness matrix:Gaussian integration and complete polynomial integration.The latter has fewer integration points than the former.Taking the transverse bending of a cantilever beam as an example,the results show that the integration scheme for Q32 can be 6×6(36-point)Gaussian integration or various 11-order complete polynomial integrations.The 25-point symmetrical integration can be used in practice:its accuracy is comparable to that of 6×6 Gaussian integration,but its calculation workload is about 69% of the latter.Q32 can simulate a cubic displacement field quite accurately even if the mesh is seriously distorted.
查看全文  查看/发表评论  下载PDF阅读器
您是第14546901位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计