黄海新,吕亚伦,程寿山.基于可靠度的桥梁结构动力优化设计[J].计算力学学报,2024,41(6):998~1004 |
| 码上扫一扫! |
基于可靠度的桥梁结构动力优化设计 |
Dynamic optimization design of bridge structures based on reliability |
投稿时间:2023-05-09 修订日期:2023-07-21 |
DOI:10.7511/jslx20230509001 |
中文关键词: 结构动力优化设计 动力特性 动力响应 桥梁结构 结构可靠度 |
英文关键词:structural dynamic optimization design dynamic characteristics dynamic response bridge structures structural reliability |
基金项目:天津市交通运输科技发展计划(2021-29,2023-48);桥梁结构安全技术国家工程实验室开放课题(2019-GJKFKT;2021-GJKFKT)资助项目. |
|
摘要点击次数: 54 |
全文下载次数: 43 |
中文摘要: |
针对桥梁结构所受动荷载具有不确定性的问题,基于模态叠加法推导了动力响应的数字特征,利用一次二阶矩法建立结构的动应力可靠度约束函数,并对其进行显示化处理,分别建立了以频率、动位移和动应力可靠度为约束的动力优化设计数学模型,并基于Matlab平台编制了相应的优化程序。算例测试结果表明,动力优化准则法、粒子群算法和灰狼算法均能在同时满足动力性能和应力可靠度约束条件下使结构整体质量目标函数获得最优值,其中PSO收敛性和稳定性好,DOC迭代次数少,且优化后构件可靠度相较于传统动力优化设计提升超过70%。同时发现,为确保面临较大不确定性时结构的可靠度指标不降低,结构优化后的质量会随着荷载幅值变异系数的增大而有所增加。本文方法可为桥梁结构受外界随机激励下的动力优化设计问题提供理论指导。 |
英文摘要: |
For the problem of uncertainty of dynamic loads on a bridge structures,the numerical characteristics of its dynamic response are determined based on the modal superposition method,and the reliability constraint function of dynamic stress is established by using the first-order second-moment method.The mathematical models of dynamic optimization design with constraints of frequency and dynamic stress reliability,dynamic displacement and dynamic stress reliability respectively,and the corresponding optimization programs are coded on Matlab platform.The test results of examples show that,the dynamic optimization criterion method,particle swarm algorithm and grey wolf algorithm can obtain the optimal value of the objective function of the whole structure mass under the constraint of both dynamic performance and stress reliability,the convergence and stability of PSO are the best,and the number of Doc iterations is the least,and the reliability of the optimized component is improved by more than 70% compared with the traditional dynamic optimization design.Meanwhile,it is found that the optimized mass of the structure will increase with the increase of the variation coefficient of the load amplitude in order to ensure that the reliability index of the structure does not decrease when facing larger uncertainties.The method presented in this paper can provide theoretical guidance for the dynamic optimal design of bridge structures under external random excitation. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|