靳放,郑素佩,封建湖,林云云.求解浅水波方程的并行物理信息神经网络算法[J].计算力学学报,2024,41(2):352~358 |
| 码上扫一扫! |
求解浅水波方程的并行物理信息神经网络算法 |
Concurrent PINN algorithm for solving shallow water wave equations |
投稿时间:2022-08-04 修订日期:2023-02-04 |
DOI:10.7511/jslx20220804001 |
中文关键词: 浅水波方程 深度学习 神经网络 激波 |
英文关键词:shallow water wave equation deep learning neural networks shock wave |
基金项目:国家自然科学基金(11971075;11901057)资助项目. |
|
摘要点击次数: 303 |
全文下载次数: 201 |
中文摘要: |
双曲守恒律方程是一类比较特殊的偏微分方程,其数值求解方法的研究一直是一个热点问题,一个显著特性是即使初始条件是光滑的,其解也可能会发展成间断。浅水波方程作为非线性双曲守恒律方程,由于间断解的存在,其精确求解存在很大困难。针对浅水波方程数值求解问题,本文基于PINN(Physics informed neural networks)反问题网络结构构造新的网络,构造的网络结构包括两个并行的神经网络,其中一个网络与已知状态数据(熵稳定格式加密求出)相关,另一个网络与方程本身相关。利用已知速度数据结合浅水波方程本身求解未知水深,最终通过一些数值算例验证网络的可行性。结果表明,新的网络结构可用于浅水波方程求解,利用速度数据可以较为精确地推算出水深。 |
英文摘要: |
Hyperbolic conservation equation is a special class of partial differential equations,and the study of its numerical solution method has always been a hot topic.One of its remarkable properties is that its solution may contain discontinuity even if the initial conditions are smooth.As a representation of the nonlinear hyperbolic conservation law,the shallow water wave equation is difficult to be solved precisely because of the existence of discontinuous solutions.In order to solve numerically the shallow water wave equation,a new network is constructed based on the inverse problem framework of PINN(Physics-informed Neural Networks).The network structure consists of two parallel neural networks,one of which is related to the known data obtained by the entropy stable schemes.The other network is related to the equation itself.The unknown water depth is determined by combining the known velocity data with the shallow water wave equation itself.Finally,the feasibility of the network is verified by some numerical examples.The results show that the new network structure can be used to solve the shallow water wave equation,and the water depth can be accurately calculated. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|