欢迎光临《计算力学学报》官方网站!
王东东,吴振宇,侯松阳.埃尔米特梁单元的分块对角与高阶质量矩阵[J].计算力学学报,2024,41(1):178~185
本文二维码信息
码上扫一扫!
埃尔米特梁单元的分块对角与高阶质量矩阵
Block diagonal and higher order mass matrices for Hermite beam elements
投稿时间:2023-09-09  修订日期:2023-10-20
DOI:10.7511/jslx20230909002
中文关键词:  埃尔米特梁单元  振动频率  集中质量矩阵  分块对角质量矩阵  高阶质量矩阵
英文关键词:Hermite beam element  vibration frequency  lumped mass matrix  block diagonal mass matrix  higher order mass matrix
基金项目:国家自然科学基金(12072302;12372201);福建省自然科学基金(2021J02003)资助项目.
作者单位E-mail
王东东 厦门大学 土木工程系 福建省滨海土木工程数字仿真重点实验室, 厦门 361005 ddwang@xmu.edu.cn 
吴振宇 厦门大学 土木工程系 福建省滨海土木工程数字仿真重点实验室, 厦门 361005  
侯松阳 厦门大学 土木工程系 福建省滨海土木工程数字仿真重点实验室, 厦门 361005  
摘要点击次数: 315
全文下载次数: 232
中文摘要:
      埃尔米特梁单元常用的集中质量矩阵,是由挠度自由度对应的一致质量矩阵元素通过行求和或节点积分构造。然而,数值结果表明该集中质量矩阵在求解包含自由端的梁振动问题时,会出现频率精度掉阶现象。本文首先从保障质量矩阵最优收敛性的数值积分精度出发,分别针对三次和五次梁单元,发展了质量矩阵的梯度增强节点积分方案。利用梯度增强节点积分方案,可以得到具有分块对角形式的单元质量矩阵,而其组装的整体质量矩阵除边界节点外仍然呈现对角形式。对于两种单元,其分块对角质量矩阵分别具有4阶最优精度和6阶次优精度。再者,将标准一致质量矩阵和具有同阶精度的梯度增强节点积分质量矩阵进行优化组合,建立了具有超收敛特性的高阶质量矩阵。最后,通过数值算例系统验证了三次和五次单元的分块对角与高阶质量矩阵的频率计算精度。
英文摘要:
      The lumped mass matrices of Hermite finite elements for Euler-Bernoulli beams are often constructed by the row sum technique via neglecting the rotational entries, or by the nodal quadrature.However, such lumped mass matrices of Hermite beam elements exhibit a sudden drop of accuracy in frequency calculation in case of free boundary conditions.In this study, based upon the numerical integration accuracy requirement, the gradient-enhanced nodal quadrature rules are developed for both cubic and quintic elements.These nodal quadrature rules lead to a block diagonal form of element mass matrices, while the assembled global mass matrix still preserves a desirable diagonal pattern except a few entries associated with the boundary nodes.The block diagonal mass matrices of cubic and quintic elements have an optimal convergence rate of 4 and a sub-optimal convergence rate of 6, respectively.Subsequently, through rationally mixing the consistent mass matrices and the mass matrices generated by the gradient-enhanced nodal quadrature rules with equal accuracy orders, superconvergent higher-order mass matrices are attained for cubic and quintic Hermite beam elements.The accuracy and robustness of the proposed block diagonal and higher-order mass matrices are systematically demonstrated by numerical results.
查看全文  查看/发表评论  下载PDF阅读器
您是第12769516位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计