欢迎光临《计算力学学报》官方网站!
常学平,周杰,范谨铭.横向载荷作用下轴向运动梁的屈曲失稳以及非线性振动特性[J].计算力学学报,2023,40(3):381~388
本文二维码信息
码上扫一扫!
横向载荷作用下轴向运动梁的屈曲失稳以及非线性振动特性
Buckling instability and transverse nonlinear vibration characteristics of axially moving beams under load
投稿时间:2021-09-15  修订日期:2021-12-15
DOI:10.7511/jslx20210915002
中文关键词:  外激励  屈曲构型  同伦分析法  初始轴向力  非线性频率
英文关键词:axial load  buckling configuration  homotopy analysis(HAM)  initial tension  nonlinear frequency
基金项目:国家自然科学基金(51674216)资助项目.
作者单位E-mail
常学平 西南石油大学 机电工程学院, 成都 610500 Changexp@swpu.edu.cn 
周杰 西南石油大学 机电工程学院, 成都 610500  
范谨铭 西南石油大学 机电工程学院, 成都 610500  
摘要点击次数: 677
全文下载次数: 369
中文摘要:
      梁的轴向运动会诱发其产生横向振动并可能导致屈曲失稳,对结构的安全性和可靠性产生重大的影响。本文重点研究了横向载荷作用下轴向运动梁的屈曲失稳及横向非线性振动特性。基于Hamilton变分原理,建立了横向载荷作用下轴向运动梁的动力学方程,获得了梁的后屈曲构型。使用截断Galerkin法,将控制方程改写成Duffing方程的形式。用同伦分析方法确定载荷作用下轴向运动梁的非线性受迫振动的封闭形式的表达式。结果表明,后屈曲构型对轴向速度和初始轴向应力有明显的依赖性。通过同伦分析法得出非线性基频的显式表达式,获得了初始轴向力会影响非线性频率随初始振幅和轴向速度的线性关系。另外,轴向外激励的方向也会改变系统固有频率。
英文摘要:
      The axial movement of the beam will induce lateral vibration and may lead to buckling instability, which has a significant impact on the safety and reliability of the structure.This paper focuses on the buckling instability and nonlinear transverse vibration characteristics of the axially moving beams under load.Based on Hamilton variational principle, the dynamic equation of the axially moving beam under transverse load is established, and the post buckling configuration of the beam is obtained.Using truncated Galerkin method, the governing equation is rewritten into the form of Duffing equation.The closed form expression of nonlinear forced vibration of the axially moving beam under load is obtained with homotopy analysis method.The numerical results show that the post buckling configuration is obviously dependent on the axial velocity and initial stress.Through the explicit expression of nonlinear fundamental frequency obtained byhomotopy analysis method, it is obtained that initial axial force will affect the linear relationship of nonlinear frequency with respect to initial amplitude and axial velocity.In addition, the direction of shaft outward excitation will also change the natural frequency of the system.
查看全文  查看/发表评论  下载PDF阅读器
您是第13577762位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计