欢迎光临《计算力学学报》官方网站!
韩少燕,姜人伟,高汝鑫,王攀.基于等几何分析的边界元法求解二维Laplace方程[J].计算力学学报,2023,40(1):105~110
本文二维码信息
码上扫一扫!
基于等几何分析的边界元法求解二维Laplace方程
Isogeometric boundary element analysis for 2D Laplace equations
投稿时间:2021-08-23  修订日期:2021-10-27
DOI:10.7511/jslx20210823001
中文关键词:  等几何分析  边界单元法  径向积分法  Laplace方程
英文关键词:isogeometric analysis  boundary element method  radial integration method  Laplace equation
基金项目:中国博士后科学基金(面上项目)(2021M690403).
作者单位
韩少燕 西安交通大学城市学院 机械工程系, 西安 710018 
姜人伟 北京宇航系统工程研究所, 北京 100076 
高汝鑫 北京理工大学 先进结构技术研究院, 北京 100081 
王攀 北京理工大学 先进结构技术研究院, 北京 100081 
摘要点击次数: 691
全文下载次数: 303
中文摘要:
      针对二维Laplace问题,提出了基于非均匀有理B样条的等几何边界单元法(IGABEM),并利用径向积分法来处理奇异积分。该方法实现了几何与求解域的无缝融合,不仅实现了求解域与几何的完美匹配,而且节约了前处理时间。该方法可以很容易地实现模型的细分,并且在仅增加少量自由度的情况下获得更高的精度。数值算例表明,该方法能够有效地求解二维Laplace方程,且具有非常好的计算精度。
英文摘要:
      In this article, an isometric boundary element method (IGABEM) based on nonuniform rational B-splines was proposed for two-dimensional Laplace problems, and the radial integral method was used to deal with singular integrals.This method not only realizes the seamless fusion of geometry and solution domain, but also saves the pre-processing time.This method can easily subdivide the model and obtain higher accuracy with only a few degrees of freedom added.Numerical examples show that this method can effectively solve the two-dimensional Laplace equation and has a very good computational accuracy.
查看全文  查看/发表评论  下载PDF阅读器
您是第13596557位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计