欢迎光临《计算力学学报》官方网站!
席振翔,于帆.基于多轮升维策略与改进量子行为粒子群优化算法的热导率函数估计方法[J].计算力学学报,2022,39(5):670~676
本文二维码信息
码上扫一扫!
基于多轮升维策略与改进量子行为粒子群优化算法的热导率函数估计方法
Thermal conductivity function estimation approach based on improved quantum-behavior particle swarm optimization algorithm
投稿时间:2021-03-22  修订日期:2021-05-06
DOI:10.7511/jslx20210322002
中文关键词:  热导率函数估计  反演方法  改进的量子行为粒子群优化算法  多轮升维策略  搜索效率提升
英文关键词:thermal conductivity function estimation  inversion method  improved quantum-behavior particle swarm optimization algorithm  multi-round upgrading strategy  search efficiency
基金项目:
作者单位
席振翔 北京科技大学 能源与环境工程学院, 北京 100083 
于帆 北京科技大学 能源与环境工程学院, 北京 100083 
摘要点击次数: 69
全文下载次数: 34
中文摘要:
      将改进的量子行为粒子群优化算法应用于材料热导率函数估计问题中,并提出了一种多轮升维策略对算法的搜索过程进行优化,形成了一种鲁棒性强且高效的反演方法。通过数值实验测试了该方法在测量误差以及系统误差下的表现,并对不同粒子群优化算法的性能进行了比较研究。结果表明,采用的反演方法能够在较大的搜索范围与反演维度下稳定收敛,对测量误差的敏感度较低;提出的多轮升维策略能够使各类粒子群优化算法在热导率函数估计问题中的搜索效率得到提升。
英文摘要:
      In this paper,the improved quantum-behavior particle swarm optimization algorithm is applied to the estimation of thermal conductivity function of materials,and a multi-round upgrading strategy is proposed to optimize the search process of the algorithm,which forms a robust and efficient inversion method. The performance of this method under measurement errors and system errors is tested by numerical experiment,and the performance of different particle swarm optimization algorithms is compared and studied. The results show that the inversion method presented in this paper can converge stably in a large search range and dimension,and has low sensitivity to measurement errors.The multi-round upgrading strategy can improve the searching efficiency of various kinds of particle swarm optimization algorithms in thermal conductivity function estimation problems.
查看全文  查看/发表评论  下载PDF阅读器
您是第10447056位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计