张正,吴曼颖,毕仁贵.基于减基概念的凸集结构可靠性分析方法[J].计算力学学报,2020,37(3):293~299 |
| 码上扫一扫! |
基于减基概念的凸集结构可靠性分析方法 |
Reliability analysis method for convex set structures based on reduced base concept |
投稿时间:2019-04-17 修订日期:2019-08-01 |
DOI:10.7511/jslx20190417002 |
中文关键词: 减基概念 蒙特卡洛模拟 凸集结构可靠性 计算效率 有限元 |
英文关键词:reduced basis concept Monte Carlo simulation structural reliability with convex set computational efficiency finite element |
基金项目:国家自然科学基金(11402096;11662004);吉首大学校级科研项目(jsdxrcyjkyxm201209)资助项目. |
|
摘要点击次数: 891 |
全文下载次数: 637 |
中文摘要: |
针对椭球凸集参数域结构的可靠性分析问题,提出了一种基于减基概念的快速求解方法。首先,将椭球参数域进行坐标正交变换,获得标准的椭球域及其相应的矩形域,在矩形域采样且通过坐标逆向变换获得原椭球参数域的样本参数点集,并以此构建结构的减基空间及其相应的减基算法;随后,在标准椭球域产生均匀的等概率抽样点,并通过坐标逆向变换和相应的减基算法进行蒙特卡洛减基模拟来分析结构的可靠度及其可靠域。由于是在低维的逼近空间中进行椭球参数域结构的位移向量解分析,故而较之有限元法能够获得较高的计算效率。算例测试验证了本文方法的有效性。 |
英文摘要: |
Aiming at the reliability analysis of a parameter structure with an ellipsoidal convex set,a fast solution method is proposed based on the reduced basis concept.Firstly,the standard ellipsoid domain and its packaged rectangular domain are obtained by the orthogonal coordinate transformation in the original ellipsoid parameter domain.Secondly,sampling is conducted in the rectangular domain and the sample parameter point set is obtained in the original ellipsoid parameter domain by the inverse coordinate transformation,and then the structural reduction space and its associated reduction algorithm are constructed.Subsequently,the uniform sampling points with equal probability are produced conducted in the standard ellipsoid domain,and then the reliability and its reliable domain of the structure are analyzed by Monte Carlo reduction simulation using the inverse coordinate transformation and corresponding reduction algorithm.Because this method is used to analyze the displacement vector solutions of a parametric structure with an ellipsoidal convex set in low-dimensional approximation space,it is more efficient than the finite element method.An example is given to test and verify the effectiveness of the proposed method. |
查看全文 查看/发表评论 下载PDF阅读器 |