欢迎光临《计算力学学报》官方网站!
冉然,秦太验.三维动态裂纹问题的超奇异积分方程法[J].计算力学学报,2019,36(3):358~363
本文二维码信息
码上扫一扫!
三维动态裂纹问题的超奇异积分方程法
Analysis of hypersingular integral equation method to 3D dynamic crack
投稿时间:2018-01-29  修订日期:2018-06-20
DOI:10.7511/jslx20180129001
中文关键词:  三维动态断裂  超奇异积分方程  积分核函数  Lubich时间卷积  动态应力强度因子
英文关键词:3D dynamic fracture  hypersingular integral equations  integral kernel function  Lubich convolution quadrature  dynamic stress intensity factor
基金项目:
作者单位E-mail
冉然 武汉科技大学城市学院, 武汉 430083 www.ran.1990@163.com 
秦太验 中国农业大学 理学院, 北京 100083  
摘要点击次数: 1474
全文下载次数: 782
中文摘要:
      基于弹性材料的动态基本方程,结合广义Betti-Rayleigh互易等式与时域下的边界积分方程,推导得到时域下的超奇异积分方程组。引入Laplace域下的动态基本解,将经过主部分析的积分核函数分解为静态和动态部分,其中动态积分核不具有奇异性。在裂纹前沿附近单元,采用与理论分析一致的平方根位移模型。结合Lubich时间卷积实现拉氏变换,采用配置点法计算超奇异积分,获得问题的数值解。并针对椭圆裂纹算例编写Fortran程序,得到冲击荷载作用下张开型裂纹的动态应力强度因子变化规律,数值结果稳定且收敛速度快。
英文摘要:
      Combining Betti-Rayleigh equation with dynamic boundary integral equation,the dynamic basic equation of elasticity is substituted into a couple of hypersingular integral equations.A basic solution in Laplace domain is introduced to derive the integral kernel function,which is divided into a static part and a dynamic part after the dominant analysis,and the dynamic part is nonsingular.According to the analytic theory of hypersingular integral equations,the square root models of displacement discontinuities in the element near the crack front are applied.Finally,with the Lubich convolution quadrature to implement dispose the Laplace transform and the collocation method to compute the hypersingular integral,the numerical solution is obtained.FORTRAN codes are programmed for examples of an elliptic crack,therefore the time variation of dynamic stress intensity factor of mode I crack under impact load is acquired.It is shown that the numerical results are stable and fast convergent.
查看全文  查看/发表评论  下载PDF阅读器
您是第13577786位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计