乔赫廷,呼婧,王世杰,赵铁军.基于牛顿-拉夫逊的拉压不同模量问题的数值求解[J].计算力学学报,2018,35(2):202~207 |
| 码上扫一扫! |
基于牛顿-拉夫逊的拉压不同模量问题的数值求解 |
A numerical algorithm for the problem of different modulus in tension and compression based on the newton-raphson scheme |
投稿时间:2017-02-26 修订日期:2017-08-28 |
DOI:10.7511/jslx20170226002 |
中文关键词: 拉压不同模量 牛顿-拉夫逊 Heaviside函数 |
英文关键词:different moduli in tension and compression Newton-Raphson Scheme Heaviside function |
基金项目:国家自然科学基金(51505298);辽宁省自然科学基金计划重点项目(20170520143)资助项目. |
|
摘要点击次数: 1604 |
全文下载次数: 1147 |
中文摘要: |
针对拉压模量不同引起的材料本构非线性,首先,通过引入改进的Heaviside函数将本构方程连续光滑化;然后,基于特征值与特征向量的求导策略,推导有限元求解模型中切线刚度矩阵的列式;最终,提出基于牛顿-拉夫逊迭代格式的拉压不同模量问题的数值求解算法。数值算例验证了本文算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于工程分析中大规模计算问题的求解。 |
英文摘要: |
For strong nonlinear constitutive relationship due to the different moduli in tension and compression,the Heaviside function is introduced into constitutive equation to make it continuous and smoothing.Then,based on the derivatives of eigenvalues and eigenvectors,the formula of tangent stiffness matrix in the finite element model is derived.Finally,a numerical algorithm is presented for the problem of bi-modulus materials based on the Newton-Raphson scheme.Numerical examples are given to demonstrate the more stable convergence and the higher accuracy of the method in this paper than those of the traditional method.The proposed method is particularity suitable for large-scale computations in engineering. |
查看全文 查看/发表评论 下载PDF阅读器 |