欢迎光临《计算力学学报》官方网站!
张慧华,韩尚宇,胡国栋,谭育新.瞬态热传导问题的精细积分数值流形方法研究[J].计算力学学报,2018,35(1):44~50
本文二维码信息
码上扫一扫!
瞬态热传导问题的精细积分数值流形方法研究
Transient heat conduction analysis by the numerical manifold method and the precise time integration
投稿时间:2016-12-15  修订日期:2017-04-12
DOI:10.7511/jslx20161215001
中文关键词:  瞬态热传导  数值流形方法  精细积分  温度场  二维
英文关键词:transient heat conduction  numerical manifold method  precise time integration  temperature  two-dimensional
基金项目:国家自然科学基金(11462014);江西省自然科学基金(20151BAB202003);江西省教育厅科技项目(GJJ14526,GJJ150752)资助项目.
作者单位E-mail
张慧华 南昌航空大学 土木建筑学院, 南昌 330063  
韩尚宇 南昌航空大学 土木建筑学院, 南昌 330063 hanshangyu1979@126.com 
胡国栋 南昌航空大学 土木建筑学院, 南昌 330063  
谭育新 南昌航空大学 土木建筑学院, 南昌 330063  
摘要点击次数: 1781
全文下载次数: 1732
中文摘要:
      数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。
英文摘要:
      Owing to the unique dual cover systems,i.e.,the mathematical cover system and the physical cover system,the numerical manifold method (NMM) is predominant method in domain discretization.As for the precise time integration method (PTIM),it is of high accuracy,absolutely stable,immune from oscillation and the solution is independent of the time step size.In this paper,the NMM,combined with the PTIM,is developed to study two-dimensional (2D) transient heat conduction problems.Based on the governing equations and associated boundary conditions,the NMM discrete equations for the considered problems are derived using the modified variational principle.The details of the PTIM and also the spatial integration scheme are presented for the solution of the time-dependent system of equations.To validate the proposed method,two typical numerical examples are carefully examined.The simulated results show that the 2D unsteady heat conduction problems can be efficiently and accurately tackled by the present approach.
查看全文  查看/发表评论  下载PDF阅读器
您是第13579835位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计