欢迎光临《计算力学学报》官方网站!
陈文,李珺璞,傅卓佳.基于时间依赖基本解的奇异边界法模拟二维狄利克雷边界标量波方程[J].计算力学学报,2017,34(2):231~237
本文二维码信息
码上扫一扫!
基于时间依赖基本解的奇异边界法模拟二维狄利克雷边界标量波方程
Singular boundary method based on time-dependent fundamental solution for 2D Scalar Wave Equation
投稿时间:2015-11-18  修订日期:2016-06-13
DOI:10.7511/jslx201702016
中文关键词:  奇异边界法  时间依赖基本解  波方程  边界离散方法  源点强度因子
英文关键词:singular boundary method  time-dependent fundamental solution  wave equation  boundary discretization method  origin intensity factor
基金项目:国家自然科学基金(11372097,11302069);111计划(B12032);国家杰出青年科学基金(11125208);声场声信息国家重点实验室开放基金(SKLA201509)资助项目
作者单位E-mail
陈文 河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京 210098 chenwen@hhu.edu.cn 
李珺璞 河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京 210098  
傅卓佳 河海大学 工程与科学数值模拟软件中心 水文水资源与水利工程国家重点实验室 力学与材料学院 南京 210098  
摘要点击次数: 1897
全文下载次数: 1354
中文摘要:
      奇异边界法是一个半解析边界配点强格式方法,具有无数值积分和无网格、编程容易以及数学简单等优点。本文首次将时间依赖基本解运用于奇异边界法,计算模拟二维标量波方程;结合确定源点强度因子的反插值技术,提出了二维狄利克雷边界标量波方程源点强度因子的一个经验公式;引进了解决波方程基本解 G 奇异性的一种无奇异积分处理方法。数值实验证明,基于时间依赖基本解的奇异边界法可精确高效地模拟二维狄利克雷边界标量波方程,在计算效率、精度、稳定性和适应性等方面有明显优势。
英文摘要:
      The singular boundary method(SBM)is a recent boundary-type collocation method with the merits of being meshless, integration-free, mathematically simple, and easy-to-program. This study makes the first attempt to extend the SBM with time-dependent fundamental solution to scalar two-dimensional wave equation. By using the inverse interpolation technique, an empirical formula is proposed to determine the origin intensity factor of the time-dependent SBM for the two-dimensional wave equation with Dirichlet boundary condition. We also introduce a non-singular integral approach to address G singularity of fundamental solution. The numerical experiments demonstrate that the present scheme shows visible advantages in terms of the accuracy and efficiency.
查看全文  查看/发表评论  下载PDF阅读器
您是第13578147位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计