欢迎光临《计算力学学报》官方网站!
胡圣荣,许静静,刘新红.反向Qm6非协调元[J].计算力学学报,2016,33(6):932~937
本文二维码信息
码上扫一扫!
反向Qm6非协调元
Reverse adjustment of non-conforming element Qm6
投稿时间:2015-07-22  修订日期:2015-11-12
DOI:10.7511/jslx201606020
中文关键词:  非协调元  分片试验  畸变敏感性  Q6单元  Qm6单元  4节点四边形单元
英文关键词:non-conforming element  patch test  distortion sensitivity  element Q6  element Qm6  4-node quadrilateral element
基金项目:
作者单位E-mail
胡圣荣 华南农业大学 工程基础教学与训练中心, 广州 510642 hsrzz@scau.edu.cn 
许静静 华南农业大学 工程基础教学与训练中心, 广州 510642  
刘新红 华南农业大学 工程基础教学与训练中心, 广州 510642  
摘要点击次数: 1696
全文下载次数: 970
中文摘要:
      为通过强式分片试验,Qm6单元对Q6单元非协调部分的[G]矩阵进行了特殊的计算处理,但抗畸变性能下降,本文提出对有关处理反向进行,以恢复甚至提高抗畸变性能。分析了Qm6单元的原理,指出其实质是修改雅可比矩阵[J]的伴随矩阵[J*],在非协调部分[G]矩阵的计算时,把[J*]看成可变量,由Qm6的对应点向Q6方向进行反向搜索,查找有利的计算点。进行了典型和苛刻的算例测试,结果表明反向调整是有效的,调整系数取镜像值-1以及扩展到-2时,新单元的抗畸变性能优于原Q6和Qm6,其中取-2对消除剪切闭锁是最优点;除弱式分片试验外,总体性能和精度接近各类4节点四边形单元的最好水平。由于方法和原理简便,实现以及推广到三维问题都有显著优势。
英文摘要:
      Element Qm6 drops its anti-distortion performance due to especial numerical treatment applied to Q6's matrix [G] of nonconforming items when forcing strong patch test.It is proposed to carry out reverse treatment on element Qm6 to resume and even improve the anti-distortion performance.By analyzing the principle of Qm6,it is pointed out that such principle is essentially to modify adjoint matrix [J*] of Jacobian matrix [J],so in calculating nonconforming items' matrix [G],it is suggested to take [J*] as a variable,do reverse searching along the direction from the corresponding point of Qm6 to that of Q6 for favorable calculation position.Some typical and harsh examples are tested;results show that the reverse treatment is effective,with adjustment factor set to mirror value -1,and further extended to -2,the resulting elements are less sensitive to distortion than the original Q6 and Qm6,especially the value -2 is optimal for elimination of shear locking.Except for weak patch test,the overall performance and accuracy are close to the best of various 4-node quadrilateral elements.With the simplicity of the method and principle,the implementation and generalization to 3D problems have a significant advantage.
查看全文  查看/发表评论  下载PDF阅读器
您是第13580810位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计