邢誉峰,高亚贺.渐进多尺度展开方法的精度和物理意义[J].计算力学学报,2016,33(4):504~508,535 |
| 码上扫一扫! |
渐进多尺度展开方法的精度和物理意义 |
Accuracy and physical interpretation of multiscale asymptotic expansion method |
投稿时间:2016-05-12 修订日期:2016-06-12 |
DOI:10.7511/jslx201604013 |
中文关键词: 多尺度渐进展开方法 物理意义 精度 |
英文关键词:multiscale asymptotic expansion method physical interpretation accuracy |
基金项目:国家自然科学基金(11172028,1372021);高等学校博士学科点专项科研基金(20131102110039);资助项目. |
|
摘要点击次数: 2132 |
全文下载次数: 1251 |
中文摘要: |
多尺度渐进展开方法(MsAEM)是分析周期复合材料结构力学行为的代表性方法,可以通过加权残量等方法实现,作者曾针对MsAEM的精度和力学含义进行研究。本文对作者的工作进行了总结,进一步明确了一维周期结构的单元阶次、摄动阶次和精确解的关系,揭示了不同阶次虚拟载荷和影响函数的物理意义,从物理角度强调了二阶展开项是不可缺少的,并对未来工作进行了展望。 |
英文摘要: |
The multiscale asymptotic expansion method (MsAEM) can be implemented by using weighted residual method etc.The authors have studied the accuracy and physical interpretation of MsAEM for years.This paper reviewed the authors' previous works,further demonstrated the relationships of element order and perturbation order with exact solution for one-dimensional periodical structures;revealed the physical interpretations of different orders of influence functions and self-balanced quasi loads;and emphasized that the second order of expansion is essential for the accuracy of MsAEM from the physical perspective.It also presented an outlook of future work. |
查看全文 查看/发表评论 下载PDF阅读器 |