欢迎光临《计算力学学报》官方网站!
张正阳,赵人达,徐腾飞.基于变量修正分布的混凝土结构长期变形预测
Prediction of long-term deformation for concrete structure based on revised distribution of variables[J].计算力学学报,2016,33(3):418~423
本文二维码信息
码上扫一扫!
基于变量修正分布的混凝土结构长期变形预测
Prediction of long-term deformation for concrete structure based on revised distribution of variables
投稿时间:2015-03-10  修订日期:2015-06-18
DOI:10.7511/jslx201603022
中文关键词:  混凝土结构  长期变形  随机分析  拉丁超立方抽样  Bayesian理论
英文关键词:concrete structure  long-term deformation  stochastic analysis  LHS  Bayesian theory
基金项目:
作者单位E-mail
张正阳 西南交通大学 桥梁工程系, 成都 610031 331604934@qq.com 
赵人达 西南交通大学 桥梁工程系, 成都 610031  
徐腾飞 西南交通大学 桥梁工程系, 成都 610031  
摘要点击次数: 1686
全文下载次数: 1053
中文摘要:
      由于随机因素的影响,混凝土结构长期变形通常表现出很强的离散性,Bayesian理论提供了改善这种离散性的方法。基于Bayesian理论的混凝土结构长期变形预测方法的核心是引入短期变形构造似然函数,通过修正先验概率得到长期变形的后验概率分布。但是对于实际结构而言,在施工之前短期变形及其标准差无法获取,这就使得这种方法在开展时机和实际应用方面存在一定的限制性。为了改善这种限制性,在随机变量修正分布的基础上,结合拉丁超立方抽样技术,采用CEB-FIP(MC90)模型建立了钢筋混凝土梁长期变形的随机分析模型。采用该模型进行混凝土梁长期变形随机分析,得到基于变量修正分布的混凝土梁长期变形预测结果,并分别与先验预测结果和Bayesian预测结果进行比较。研究结果表明,基于变量修正分布的预测结果与Bayesian预测结果十分接近,比先验预测结果不确定性降低50%左右,与试验结果吻合良好。
英文摘要:
      The long-term deformation prediction method based on Bayesian theory for concrete structures becomes weak when the prediction work should be carried out before the structure being constructed.Because there is no measured value of short-term deformation to build the likelihood function,and the standard deviation of the short-term deformation,an important part of the likelihood function,is difficult to acquire for a real structure.An alternative method of Bayesian for predicting long-term deformation of the concrete structure was provided in this paper.Prior distribution of variables were revised by taking advantage of data of variable experiment.The stochastic analysis was carried out by using Latin hypercube sampling (LHS) method based on the revised distribution of the variable.The prediction results of 4 concrete beams indicate that the uncertainty of the revised distribution decreases by nearly 50%.The revised prediction results show a good coincidence with the Bayesian prediction results and the experimental data.
查看全文  查看/发表评论  下载PDF阅读器
您是第13576358位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计