欢迎光临《计算力学学报》官方网站!
杨扬,徐绯,李小婷,王璐.FPM改进算法及在应力波传播问题中的应用
A specified improved algorithm for Finite Particle Method and its application to wave propagation[J].计算力学学报,2016,33(2):216~222,237
本文二维码信息
码上扫一扫!
FPM改进算法及在应力波传播问题中的应用
A specified improved algorithm for Finite Particle Method and its application to wave propagation
投稿时间:2014-12-03  修订日期:2015-03-06
DOI:10.7511/jslx201602012
中文关键词:  有限粒子法  SPH  矩阵分解  稳定性  计算精度
英文关键词:Finite Particle Method  SPH  matrix decomposition  stability  accuracy
基金项目:国家自然科学基金(11272266);西北工业大学研究生创业种子基金(Z2014083)资助项目.
作者单位E-mail
杨扬 西北工业大学 航空学院, 西安 710072 npuyang@nwpu.edu.cn 
徐绯 西北工业大学 航空学院, 西安 710072  
李小婷 西北工业大学 航空学院, 西安 710072  
王璐 西北工业大学 航空学院, 西安 710072  
摘要点击次数: 1977
全文下载次数: 1202
中文摘要:
      有限粒子法(FPM)是传统SPH方法的重要发展,大大提高了边界区域粒子的计算精度。然而在迭代计算过程中,高耗时和潜在的数值不稳定性是制约FPM应用的关键因素。通过对FPM基本方程进行矩阵分解,建立了一种特殊格式的FPM改进算法。该方法保持FPM方法在边界区域较高计算精度的同时,成功地规避了传统FPM方法对系数矩阵可逆性的限制,大大提高了计算效率。最后,将改进算法在一维应力波传播问题中予以实现,获得了较好的数值结果。
英文摘要:
      Finite Particle Method (FPM) is a significant improvement to the traditional SPH method,which can greatly improve the computational accuracy for boundary particles.However,in the iteration process,long computing time and potential numerical instability are the key factors restricting the application of FPM.By conducting matrix decomposition and structural analysis on the basic equations of FPM,a Specified FPM method (SFPM) is proposed,which can not only maintain the high computational accuracy of FPM for boundary particles,but also avoid the restriction on the invertibility of the coefficient matrix in traditional FPM and greatly reduce the computing time.Finally,SFPM method is applied to the one-dimensional stress wave propagation problem,and the ideal simulation results show that SFPM is an effective improvement for traditional FPM.
查看全文  查看/发表评论  下载PDF阅读器
您是第13579983位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计