隋晓东,任晓辉,秦政琪,吴振.复合材料层合厚板锯齿理论及有限元分析[J].计算力学学报,2016,33(1):39~44 |
| 码上扫一扫! |
复合材料层合厚板锯齿理论及有限元分析 |
Zig-zag theory for thick laiminated compoiste plates and finite element analysis |
投稿时间:2014-09-23 修订日期:2015-03-14 |
DOI:10.7511/jslx201601007 |
中文关键词: 锯齿理论 三角形单元 横法向应变 复合材料层合/夹层板 横向剪切应力 |
英文关键词:Zig-zag theory triangular element transverse normal strain laminated composite/sandwich plate transverse shear stress |
基金项目:国家自然科学基金(11272217,11402152)资助项目. |
|
摘要点击次数: 2528 |
全文下载次数: 1885 |
中文摘要: |
对于较厚复合材料弯曲问题,已有锯齿型厚板理论最大误差超过35%。为了合理地分析较厚复合材料弯曲问题,发展了准确高效的锯齿型厚板理论。此理论位移变量个数独立于层合板层数,其面内位移不含有横向位移一阶导数,构造有限元时仅需C0插值函数,故称此理论为C0型锯齿厚板理论。基于发展的锯齿理论,构造了六节点三角形单元并推导了复合材料层合/夹层板弯曲问题有限元列式。为验证C0型锯齿厚板理论性能,分析了复合材料层合/夹层厚板弯曲问题,并与已有C1型锯齿理论对比。结果表明,本文的C0型锯齿厚板理论最大误差<15%,比已有锯齿型厚板理论准确高效。 |
英文摘要: |
For bending problems of thick composite structures, the maximum percentage errors in the existed zig-zag theories are more than 35.In order to reasonably analyze the bending problems of such structures, this paper proposes an accurate and efficient zig-zag theory for thick composite plates.Number of unknown variables involved displacement fields is independent of layer number in laminates.Moreover, the first derivative of transverse displacement has been taken out from the in-plane displacement fields in the refined zig-zag theory, so that the C0 shape functions are only required during its finite element implementation.Based on the proposed zig-zag theory, a six-node triangular element in combination with finite element formulation is presented for bending analysis of thick laminated composite and sandwich plates, which is compared to the previous C1-type zig-zag theory.Numerical results showed that the proposed zig-zag theories is more accurate and efficient in comparison with the existed zig-zag theories. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|
|