孙雁,高强,钟万勰.非线性Schrödinger方程的保辛数值求解[J].计算力学学报,2015,32(5):595~600,607 |
| 码上扫一扫! |
非线性Schrödinger方程的保辛数值求解 |
Numerical solution with symplectic preserving of nonlinear Schrödinger equation |
投稿时间:2014-06-21 修订日期:2014-08-27 |
DOI:10.7511/jslx201505003 |
中文关键词: 非线性Schrödinger 方程 Hamilton体系 保辛 能量守恒 区段混合能 |
英文关键词:nonlinear Schrödinger equation Hamilton system symplectic preserving energy preserving interval mixed energy |
基金项目:国家自然科学基金(51278298);国家863计划(2012AA022606)资助项目. |
|
摘要点击次数: 1784 |
全文下载次数: 1477 |
中文摘要: |
首先将非线性Schrödinger 方程化为Hamilton正则方程形式,而后建立Hamilton体系下的变分原理。再用有限元法离散空间坐标,同时对时间坐标进行精细积分,最后运用混合能变分原理,提出非线性Schrödinger 方程保辛数值解法。这种解法在保辛的同时,可以让能量和质量在积分格点上亦全部达到守恒。数值算例验证了该方法的有效性。 |
英文摘要: |
This paper proposes a new numerical method with symplectic preserving to nonlinear Schrödinger equation,and the validity of this method is proved by numerical examples.We firstly transform nonlinear Schrödinger equation to Hamilton equations and therefore found Hamilton variational principle,followed with the discrete space coordinate through finite element method,precise integration algorithm used on time coordinate,and then with the mixed-energy variational principle,a numerical symplectic-preserving solution of nonlinear Schrödinger equation in the paper is well presented,while energy and mass preserving is realized simultaneously on the integration grids.Numerical examples later on demonstrate the effectiveness of this method. |
查看全文 查看/发表评论 下载PDF阅读器 |