张国庆,杨海天.蚁群算法求解二维拉压不同模量反问题[J].计算力学学报,2014,31(6):687~693 |
| 码上扫一扫! |
蚁群算法求解二维拉压不同模量反问题 |
Ant colony algorithm based numerical solution for inverse bimodular problems |
投稿时间:2014-06-29 修订日期:2014-08-16 |
DOI:10.7511/jslx201406002 |
中文关键词: 不同模量 蚁群算法 参数识别 有限元 区域非均质 |
英文关键词:bimodulus ant colony algorithm parameter identification FEM regionally inhomogeneous |
基金项目:国家自然科学基金(10772035,11072043);国家重点基础研究发展计划(2010CB832703)资助项目. |
|
摘要点击次数: 2593 |
全文下载次数: 1326 |
中文摘要: |
利用光滑函数技术对二维拉压不同模量本构关系进行光滑化处理,采用初应力方法求解二维拉压不同模量正问题的有限元方程。在此基础上,建立了基于连续域蚁群算法的二维拉压不同模量反问题的数值求解模型,考虑了区域非均质的影响,实现了对拉压弹性模量和泊松比的单一/组合识别。通过两个数值算例,对所提算法进行了数值验证,分别探讨了蚁群算法相关参数、测点分布和数据噪音等对识别结果的影响。数值验证表明,所提算法可有效地求解二维拉压不同模量反问题,并具有较好的计算精度。 |
英文摘要: |
A smoothing function technique is employed to smooth the 2-D bimodular constitutive model,and the initial stress method is used to solve FE equations of the 2-D forward bimodulur problem.Utilizing the solution of forward problem,a continuous ant colony algorithm (ACA) based numerical model is developed to solve the 2-D inverse bimodulur problem with the consideration of regional inhomogeneity,and single/combined identification of tensional/compressive modulus and Poisson ratio is realized.The proposed approach is verified via two numerical tests,and the impacts of parameters relevant to ACA,locations of measurement points and noisy data are taken into account,respectively.Numerical verification indicates that the proposed algorithm can be used to deal with the 2-D inverse bimodulur problem effectively with fairly good computing accuracy. |
查看全文 查看/发表评论 下载PDF阅读器 |