欢迎光临《计算力学学报》官方网站!
王星,马天宝,宁建国.双曲偏微分方程的局部伪弧长方法研究[J].计算力学学报,2014,31(3):384~389
本文二维码信息
码上扫一扫!
双曲偏微分方程的局部伪弧长方法研究
Local pseudo arc-length method for hyperbolic partial differential equation
投稿时间:2013-01-21  修订日期:2013-08-22
DOI:10.7511/jslx201403017
中文关键词:  数值方法  局部伪弧长  双曲问题
英文关键词:numerical method  local pseudo arc length  hyperbolic problem
基金项目:国家自然科学基金(11032002,11172041)资助项目.
作者单位E-mail
王星 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081  
马天宝 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081 madabal@bit.edu.cn 
宁建国 北京理工大学 爆炸科学与技术国家重点实验室, 北京 100081  
摘要点击次数: 2785
全文下载次数: 1469
中文摘要:
      重点研究了局部伪弧长方法在处理偏微分方程,尤其是双曲型偏微分方程出现激波间断的奇异性问题,对比分析了全局伪弧长方法空间转化的形式及其网格自适应的性质。为提高求解效率,提出了局部伪弧长方法,利用激波间断的性质,给出了判断奇异点位置以及模板选择的方法,涉及如何处理激波振荡,如何引入弧长参数,以及怎样求解间断等问题。通过数值算例验证了局部伪弧长在激波捕捉和追踪方面的可行性,通过比较局部伪弧长方法与Godunov方法处理不同初值条件的双曲问题,显示出局部伪弧长方法处理双曲偏微分方程的优越性,为伪弧长方法应用到物理问题奠定基础。
英文摘要:
      In this paper,a local pseudo arc-length method is proposed for hyperbolic partial differential equation with singular problem of shock waves,and the forms of space transformation and adaptive mesh refinement are analyzed for the global pseudo arc-length method.In order to improve the computational efficiency,the local pseudo arc-length method which gives the ways to determine the position of singular points and select the computational stencil is presented according to the properties of shock wave.The modifications of the new method involve how to introduce the arc-length parameters and how to dispose the shock wave oscillation.The feasibility of the local pseudo arc-length method in capturing and tracking shock is proved through numerical examples,and the superiority of local pseudo arc-length method in dealing with hyperbolic partial differential equation is shown by comparing our method with Godunov method for disposing different initial conditions of the hyperbolic problems.The numerical results demonstrate that our new method can be applied to engineering problems.
查看全文  查看/发表评论  下载PDF阅读器
您是第13579286位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计