欢迎光临《计算力学学报》官方网站!
郑金海,董文凯,徐龙辉,王岗.矩形及其扩展形状港湾内的水波共振[J].计算力学学报,2014,31(2):254~258
本文二维码信息
码上扫一扫!
矩形及其扩展形状港湾内的水波共振
Water-wave resonance within a rectangular harbor and its extensional shapes
投稿时间:2013-06-11  修订日期:2013-08-19
DOI:10.7511/jslx201402019
中文关键词:  港湾共振  水波共振  矩形港湾  Boussinesq方程  水波理论
英文关键词:harbor resonance  water-wave resonance  rectangular harbors  Boussinesq equations  water wave theory
基金项目:国家自然科学基金(51209081);中央高校科研业务费(2012B06514)资助项目.
作者单位E-mail
郑金海 河海大学 水文水资源与水利工程科学国家重点实验室, 南京 210098
河海大学 港口海岸与近海工程学院, 南京 210098 
 
董文凯 河海大学 港口海岸与近海工程学院, 南京 210098  
徐龙辉 河海大学 港口海岸与近海工程学院, 南京 210098
苏州市航道管理处, 苏州 215002 
 
王岗 河海大学 水文水资源与水利工程科学国家重点实验室, 南京 210098
河海大学 港口海岸与近海工程学院, 南京 210098 
gangwang@hhu.edu.cn 
摘要点击次数: 2206
全文下载次数: 1683
中文摘要:
      从理论上给出了矩形封闭港湾的特征参数表达式,并采用Boussinesq模型模拟比较了矩形及其扩展形状港湾内的水波共振现象,研究了边界对港湾共振的影响。通过定义无量纲参数熵定量比较了不同港湾内各模态能量分布的集散度。结果表明,矩形港湾短边界曲率的微小增加,可以使得港内能量分布到更多的模态,有利于改善其内的水波共振。
英文摘要:
      The paper presents expressions of eigen vales for oscillations within a rectangular harbor,and then uses the Boussinesq model to simulate harbor oscillation in rectangular basins and their extensional shapes to investigate the effects of boundary conditions.The entropy measuring equipartition is introduced to quantitatively compare oscillations within different basins.It is shown that slight changes of the short side of rectangular basins could result in that energy re-distribute in more modes,which may mitigate oscillations dramatically.
查看全文  查看/发表评论  下载PDF阅读器
您是第13574806位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计