欢迎光临《计算力学学报》官方网站!
毛崎波.通过Adomian分解法求解二维Helmholtz方程[J].计算力学学报,2014,31(1):37~40,102
本文二维码信息
码上扫一扫!
通过Adomian分解法求解二维Helmholtz方程
Adomian decomposition method for solving two dimensional Helmholtz equations
投稿时间:2012-10-10  修订日期:2012-12-24
DOI:10.7511/jslx201401007
中文关键词:  Helmholtz方程  Adomian分解法  精确解  收敛性
英文关键词:Helmholtz equations  Adomian decomposition method  exact solutions  convergence
基金项目:国家自然科学基金(51265037);第44批教育部留学 回国人员科研启动基金;江西省高等学校科技落地计划(KJLD12075);江西省教育厅科技项目(GJJ13524)资助项目.
作者单位
毛崎波 南昌航空大学 飞行器工程学院, 南昌 330063 
摘要点击次数: 3054
全文下载次数: 1315
中文摘要:
      提出基于Adomian分解法求解二维Helmholtz方程。通过Adomian分解法可以把Helmholtz微分方程和边界条件分别转换成递归代数公式和适用符号计算的简单代数公式。利用边界条件可以很容易得到方程的解析解表达式。Adomian分解法的主要特点在于计算简单快速,并且不需要进行线性化或离散化。最后给出数值实例以验证Adomian分解法求解二维Helmholtz方程的有效性。通过数值计算可以发现,基于Adomian分解法的计算结果非常接近精确解,并且该方法具有良好的收敛性。这表明Adomian分解法能够快速有效求解Helmholtz方程。
英文摘要:
      The Adomian decomposition method (ADM) is employed in this paper to solve two dimensional Helmholtz equations.Based on the ADM the Helmholtz differential equation becomes a recursive algebraic equation.Furthermore,the boundary conditions become simple algebraic equations which are suitable for symbolic computation.By using boundary conditions,the closed-form series solution can be easily obtained.The main advantages of ADM are computational simplicity and do not involve any linearization or discretization.Finally,several computed examples are presented to check the reliability of the method.Comparing the results using ADM to the exact solutions,excellent agreement is achieved.The numerical results demonstrate that the ADM is quite accurate and readily implemented.Furthermore,the good convergence and the excellent numerical stability of the solution based on the ADM can also be found.It means that the ADM is quite efficient and is practically well suited for solving two dimensional Helmholtz equations.
查看全文  查看/发表评论  下载PDF阅读器
您是第13574573位访问者
版权所有:《计算力学学报》编辑部
本系统由 北京勤云科技发展有限公司设计